Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (3): 238-248    DOI: 10.1631/FITEE.1400083
    
基于国产高分辨率遥感影像和面向对象多变量模型的城市土地利用分类
Li-gang Ma, Jin-song Deng, Huai Yang, Yang Hong, Ke Wang
Institute of Applied Remote Sensing & Information Technology, Zhejiang University, Hangzhou 310058, China; School of Civil Engineering and Environmental Sciences and School of Meteorology, University of Oklahoma, Norman, OK 73019, USA; State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Urban landscape classification using Chinese advanced high-resolution satellite imagery and an object-oriented multi-variable model
Li-gang Ma, Jin-song Deng, Huai Yang, Yang Hong, Ke Wang
Institute of Applied Remote Sensing & Information Technology, Zhejiang University, Hangzhou 310058, China; School of Civil Engineering and Environmental Sciences and School of Meteorology, University of Oklahoma, Norman, OK 73019, USA; State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF 
摘要: 目的:资源一号02C星搭载国产遥感卫星序列中为数不多的高性能传感器之一,获取大量的影像数据。然而,在空间分辨率相对较高,光谱分辨率比较低的情况下,城市土地覆盖分类势必存在一定问题。如何深度挖掘影像光谱和空间信息,建立可行的技术方法流程,实现准确的城市土地覆盖分类,进而为其推广应用奠定基础十分必要。
创新点:提出光谱与空间领域信息、判别分析、面向对象法结合的技术流程体系(图2),实现城市土地覆盖的准确分类。对分类结果采用基于点和图斑面积的两种验证方法进行验证。
方法:计算图像纹理、空间自相关特征、形状指数、植被指数、不透水面含量等信息,与光谱信息结合,经过判别分析和相关分析的筛选,实现面向对象的分类和两种指标的精度评价。
结论:根据本文提出的技术路线,可以实现相对准确的城市土地覆盖分类。总体点位精度在92%以上(表2),面积精度达到82%以上,误差通常源自住宅和裸土的混淆。影像数据在城市土地覆盖分类方面非常有效。
关键词: 02C星分类城市多变量模型    
Abstract: The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially in urban areas, has been under constant study. In view of the limited spectral resolution of the ZY-1 02C satellite (three bands), and the complexity and heterogeneity across urban environments, we attempt to test its performance of urban landscape classification by combining a multi-variable model with an object-oriented approach. The multiple variables including spectral reflection, texture, spatial autocorrelation, impervious surface fraction, vegetation, and geometry indexes were first calculated and selected using forward stepwise linear discriminant analysis and applied in the following object-oriented classification process. Comprehensive accuracy assessment which adopts traditional error matrices with stratified random samples and polygon area consistency (PAC) indexes was then conducted to examine the real area agreement between a classified polygon and its references. Results indicated an overall classification accuracy of 92.63% and a kappa statistic of 0.9124. Furthermore, the proposed PAC index showed that more than 82% of all polygons were correctly classified. Misclassification occurred mostly between residential area and barren/farmland. The presented method and the Chinese ZY-1 02C satellite imagery are robust and effective for urban landscape classification.
Key words: ZY-1 02C satellite    Classification    Urban    Multi-variable model
收稿日期: 2014-03-07 出版日期: 2015-03-04
CLC:  TP751.1  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Li-gang Ma
Jin-song Deng
Huai Yang
Yang Hong
Ke Wang

引用本文:

Li-gang Ma, Jin-song Deng, Huai Yang, Yang Hong, Ke Wang. Urban landscape classification using Chinese advanced high-resolution satellite imagery and an object-oriented multi-variable model. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 238-248.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400083        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I3/238

[1] Ehsan Saeedi, Yinan Kong, Md. Selim Hossain. 边信道攻击和学习向量量化[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 511-518.
[2] Guo-jiang Shen, Yong-yao Yang. 一种城市主干道信号动态协调控制方法及其应用[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 907-918.
[3] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[4] G. R. Brindha, P. Swaminathan, B. Santhi. 一种观点挖掘新词语权重过程性能分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1186-1198.
[5] Jie He, Yue-xiang Yang, Yong Qiao, Wen-ping Deng. 基于簇流的细粒度P2P流量分类[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 391-403.
[6] Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen. 基于Kinect的实时面部情感识别[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 272-282.
[7] Omid Abbaszadeh, Ali Amiri, Ali Reza Khanteymoori. 一种概念漂移情况下数据流分类的整体方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 1059-1068.
[8] Jie Zhou, Bi-cheng Li, Gang Chen. 基于中文维基的大规模命名实体识别语料自动生成方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(11): 940-956.
[9] Ying Cai, Meng-long Yang, Jun Li. 基于深度卷积网络的多分类法在头部姿态估计中的应用[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(11): 930-939.
[10] Syed Adeel Ali Shah, Muhammad Shiraz, Mostofa Kamal Nasir, Rafidah Binti Md Noor. 城市车辆网络的单播路由协议:综述、分类法和开放性研究问题[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 489-513.
[11] Yin Tian, Hong-hui Dong, Li-min Jia, Si-yu Li. 基于多传感器相关关系的车型重识别算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(5): 372-382.
[12] Fei-wei Qin, Lu-ye Li, Shu-ming Gao, Xiao-ling Yang, Xiang Chen. 用于三维CAD模型分类的深度学习方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 91-106.
[13] Hao Shao, Feng Tao, Rui Xu. 采用专家问询方法的主动迁移学习算法研究[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 107-118.
[14] Ahmad Karim, Rosli Bin Salleh, Muhammad Shiraz, Syed Adeel Ali Shah, Irfan Awan, Nor Badrul Anuar. 僵尸网络探测技术:回顾、发展趋势及存在的问题[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 943-983.