Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (3): 227-237    DOI: 10.1631/FITEE.1400217
    
基于梯度的压缩感知图像融合
Yang Chen, Zheng Qin
Department of Computer Science & Technology, Tsinghua University, Beijing 100084, China
Gradient-based compressive image fusion
Yang Chen, Zheng Qin
Department of Computer Science & Technology, Tsinghua University, Beijing 100084, China
 全文: PDF 
摘要: 目的:面向多传感器图像融合,实现基于梯度的压缩感知图像融合,使其具有传输量小,计算复杂度低的特点。
创新点:提出一种基于梯度的融合规则(图1),对压缩感知系数进行融合,并对融合后的压缩感知系数进行反变换得到原图像,提高压缩感知融合质量。
方法:首先,对多传感器捕获的图像进行压缩感知分解以提高传感器传输速率。然后在融合阶段,基于压缩感知系数梯度进行融合得到融合后的压缩感知系数,并对融合后的系数进行压缩感知反变换得到融合后图像。通过两种融合场景的应用实验(图2-7,表1-6),证明所提算法相比于其他传统压缩感知图像融合方法,在人眼视觉及客观融合标准中均更优。
结论:针对多种融合场景,提出一种高效的基于梯度的压缩感知的图像融合方法,提高图像融合精度。
关键词: 压缩感知图像融合基于梯度的图像融合压缩感知图像融合    
Abstract: We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sampling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By compositing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best performance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.
Key words: Compressive sensing (CS)    Image fusion    Gradient-based image fusion    CS-based image fusion
收稿日期: 2014-06-18 出版日期: 2015-03-04
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yang Chen
Zheng Qin

引用本文:

Yang Chen, Zheng Qin. Gradient-based compressive image fusion. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 227-237.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400217        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I3/227

[1] Wei Lu, Zhi-yu Xiang, Ji-lin Liu. 基于在线建立与匹配压缩全景路标的增强型视觉里程计[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 152-165.
[2] Min Yuan, Bing-xin Yang, Yi-de Ma, Jiu-wen Zhang, Fu-xiang Lu, Tong-feng Zhang. 基于多尺度UDCT域字典学习及分块约束型分裂增广拉格朗日收缩算法的高度欠采样磁共振图像重构[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 1069-1087.