Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (8): 664-674    DOI: 10.1631/jzus.C1300377
    
自适应轮廓波–小波迭代收缩遥感图像复原算法
Nu Wen, Shi-zhi Yang, Cheng-jie Zhu, Sheng-cheng Cui
Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031, China; University of Chinese Academy of Sciences, Beijing 100049, China
Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration
Nu Wen, Shi-zhi Yang, Cheng-jie Zhu, Sheng-cheng Cui
Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031, China; University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF 
摘要: 研究目的:针对遥感图像的特点,使用分解模型,提高复原质量;使用自适应方法和线性搜索方法提高复原图像质量和迭代算法的收敛速度。
创新要点:使用基于稀疏字典的分解模型,提高了复原图像的质量;使用自适应方法和经验方法,弥补了复原问题先验知识不足的缺点;使用线性搜索和快速迭代算法,有效提高了算法的收敛速度。
方法提亮:首先,利用基于稀疏字典的分裂BregmanRudin-Osher-Fatemi模型,将图像分解为卡通和纹理两部分,分别用小波变换和轮廓波变换表示。接着,运用自适应方法估计正则化参数和经验方法计算收缩阈值。最后,使用线性搜索方法寻找步长,并结合快速收缩算法加速算法收敛。
重要结论:相比于两步迭代算法,基于自适应的轮廓波–小波迭代收缩算法能有效提高复原图像的改善信噪比,同时加快了算法的收敛速度。
关键词: 图像复原自适应卡通–纹理分解线性搜索迭代收缩    
Abstract: In this paper, we present an adaptive two-step contourlet-wavelet iterative shrinkage/thresholding (TcwIST) algorithm for remote sensing image restoration. This algorithm can be used to deal with various linear inverse problems (LIPs), including image deconvolution and reconstruction. This algorithm is a new version of the famous two-step iterative shrinkage/thresholding (TwIST) algorithm. First, we use the split Bregman Rudin-Osher-Fatemi (ROF) model, based on a sparse dictionary, to decompose the image into cartoon and texture parts, which are represented by wavelet and contourlet, respectively. Second, we use an adaptive method to estimate the regularization parameter and the shrinkage threshold. Finally, we use a linear search method to find a step length and a fast method to accelerate convergence. Results show that our method can achieve a signal-to-noise ratio improvement (ISNR) for image restoration and high convergence speed.
Key words: Image restoration    Adaptive    Cartoon-texture decomposition    Linear search    Iterative shrinkage/thresholding
收稿日期: 2013-12-26 出版日期: 2014-08-06
CLC:  TP7  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Nu Wen
Shi-zhi Yang
Cheng-jie Zhu
Sheng-cheng Cui

引用本文:

Nu Wen, Shi-zhi Yang, Cheng-jie Zhu, Sheng-cheng Cui. Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 664-674.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1300377        http://www.zjujournals.com/xueshu/fitee/CN/Y2014/V15/I8/664

[1] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[2] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. 含参数初值整定和自适应鲁棒方法的3-RPS气动并联平台位姿控制[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 303-316.
[3] Erfan Shaghaghi, Mohammad Reza Jabbarpour, Rafidah Md Noor, Hwasoo Yeo, Jason J. Jung. 采用车载通信的自适应绿色交通信号控制[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 373-393.
[4] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. 含参数初值整定和自适应鲁棒方法的3-RPS气动并联平台位姿控制[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 303-316.
[5] Yong-chun Xie, Huang Huang, Yong Hu, Guo-qi Zhang. 先进控制方法在航天器上的应用:进展、挑战和未来发展[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 841-861.
[6] Peng Xiao, Zhi-yang Li, Song Guo, Heng Qi, Wen-yu Qu, Hai-sheng Yu. 一种K自适应的广域网SDN控制器部署方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 620-633.
[7] Jin Wang, Feng Shu, Ri-qing Chen, Yu-di Cui, Yu Chen, Jun Li. 多用户对双向中继系统自适应稳健波束成形[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 265-280.
[8] Meng-di Jiang, Yi Li, Wei Liu. 一般四元数函数梯度的定义、特性及在信号处理领域的应用[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 83-95.
[9] Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. 一种基于参数扰动的芯片成品率双目标优化框架[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 160-172.
[10] Xiao-yu ZHANG. 一类非仿射离散非线性系统的直接自适应模糊滑模控制[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1331-1343.
[11] Wei Xia, Ju-lei Zhu, Wen-ying Jiang, Ling-feng Zhu. 考虑输入噪声的混合调制拉格朗日明确时延估计改进算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1067-1073.
[12] Gurmanik Kaur, Ajat Shatru Arora, Vijender Kumar Jain. 基于体位特征使用混杂模型预测血压对于无支撑后背的反应[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 474-485.
[13] Bang-hua Yang, Liang-fei He, Lin Lin, Qian Wang. 脑机接口中基于约束独立分量分析和自适应滤波的眼电快速去除[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 486-496.
[14] Wei Lu, Zhi-yu Xiang, Ji-lin Liu. 基于在线建立与匹配压缩全景路标的增强型视觉里程计[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 152-165.
[15] Jie Zhou, Bi-cheng Li, Gang Chen. 基于中文维基的大规模命名实体识别语料自动生成方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(11): 940-956.