Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (7): 574-583    DOI: 10.1631/jzus.C1300302
    
基于光学摄像系统和惯性传感器数据融合的机器人运动跟踪系统
Jie Chen, Can-jun Yang, Jens Hofschulte, Wan-li Jiang, Cha Zhang
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; ABB Corporate Research China, Shanghai 201319, China
A robust optical/inertial data fusion system for motion tracking of the robot manipulator
Jie Chen, Can-jun Yang, Jens Hofschulte, Wan-li Jiang, Cha Zhang
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; ABB Corporate Research China, Shanghai 201319, China
 全文: PDF 
摘要: 研究目的:机器人运动跟踪系统对测量精度、采样频率以及系统稳定性都有很高要求,目前市面上廉价的光学摄像运动跟踪系统难以满足。惯性传感器具有采样频率高、稳定性好等优点,但用于运动跟踪则会产生较大累计误差;它和光学摄像跟踪系统可以很好地互补。本文通过卡尔曼滤波算法将惯性传感器与光学摄像系统进行数据融合,以提升光学摄像系统的测量精度、采样频率以及稳定性,使其更好地用于机器人运动跟踪。
创新要点:提出了一种通过惯性传感器提升光学摄像系统性能的方法。基于对光学摄像系统性能的全面分析,提出了一个有针对性的系统实现方案。
方法提亮:将惯性传感器提供的加速度、角速度信息与光学摄像系统测得的位置、速度信息进行重力补偿和坐标同步处理后,运用卡尔曼滤波算法进行融合。通过分析光学摄像系统测量精度的不均匀分布情况,为卡尔曼滤波算法中测量噪声的估计提供了依据。
重要结论:解决了在系统实现过程中重力补偿、坐标同步以及测量噪声估计等问题。实验证实,通过数据融合,惯性传感器可以有效提高光学摄像系统的测量精度、采样频率以及稳定性。
关键词: 数据融合卡尔曼滤波光学摄像系统惯性传感器    
Abstract: We present an optical/inertial data fusion system for motion tracking of the robot manipulator, which is proved to be more robust and accurate than a normal optical tracking system (OTS). By data fusion with an inertial measurement unit (IMU), both robustness and accuracy of OTS are improved. The Kalman filter is used in data fusion. The error distribution of OTS provides an important reference on the estimation of measurement noise using the Kalman filter. With a proper setup of the system and an effective method of coordinate frame synchronization, the results of experiments show a significant improvement in terms of robustness and position accuracy.
Key words: Data fusion    Optical tracking    Inertial measurement unit    Kalman filter
收稿日期: 2013-10-23 出版日期: 2014-07-10
CLC:  TP23  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jie Chen
Can-jun Yang
Jens Hofschulte
Wan-li Jiang
Cha Zhang

引用本文:

Jie Chen, Can-jun Yang, Jens Hofschulte, Wan-li Jiang, Cha Zhang. A robust optical/inertial data fusion system for motion tracking of the robot manipulator. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 574-583.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1300302        http://www.zjujournals.com/xueshu/fitee/CN/Y2014/V15/I7/574

[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[2] Xiao-ming Gou, Zhi-wen Liu, Wei Liu, You-gen Xu. 三元数域自适应滤波与跟踪算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 834-840.
[3] Mehdi Ahmadi Jirdehi, Reza Hemmati, Vahid Abbasi, Hedayat Saboori. 一种针对测试误差、参数误差和负荷突变故障分析的多功能动态状态估计器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1218-1227.
[4] Hong Liu, Yu-long Zhou, Zhao-peng Gu. 基于部分惯性传感器信息的惯性传感器–摄像机标定方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 999-1008.
[5] Peng-fei Qian, Guo-liang Tao, De-yuan Meng, Hao Liu. 用于气动系统的一种改进型直接自适应鲁棒运动跟踪控制器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 878-891.