Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (4): 288-295    DOI: 10.1631/jzus.C1200369
    
Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology
Ge-liang Yang, Zhi-gong Wang, Zhi-qun Li, Qin Li, Fa-en Liu, Zhu Li
Engineering Research Center of RF-ICs and RF-Systems, Ministry of Education, Southeast University, Nanjing 210096, China
Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology
Ge-liang Yang, Zhi-gong Wang, Zhi-qun Li, Qin Li, Fa-en Liu, Zhu Li
Engineering Research Center of RF-ICs and RF-Systems, Ministry of Education, Southeast University, Nanjing 210096, China
 全文: PDF 
摘要: A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral Marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of ?15–?12.5 dB at fixed fIF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28–35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred P1dB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm2 including pads.
关键词: Complementary metal-oxide-semiconductor (CMOS)Sub-harmonically pumped resistive mixer (SHPRM)Marchand balance-to-unbalance (balun)Millimeter wave (MMW)Monolithic microwave integrated circuit (MMIC)    
Abstract: A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral Marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of ?15–?12.5 dB at fixed fIF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28–35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred P1dB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm2 including pads.
Key words: Complementary metal-oxide-semiconductor (CMOS)    Sub-harmonically pumped resistive mixer (SHPRM)    Marchand balance-to-unbalance (balun)    Millimeter wave (MMW)    Monolithic microwave integrated circuit (MMIC)
收稿日期: 2012-12-22 出版日期: 2013-04-03
CLC:  TN4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Ge-liang Yang
Zhi-gong Wang
Zhi-qun Li
Qin Li
Fa-en Liu
Zhu Li

引用本文:

Ge-liang Yang, Zhi-gong Wang, Zhi-qun Li, Qin Li, Fa-en Liu, Zhu Li. Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology. Front. Inform. Technol. Electron. Eng., 2013, 14(4): 288-295.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1200369        http://www.zjujournals.com/xueshu/fitee/CN/Y2013/V14/I4/288

[1] Sepehr Tabrizchi, Nooshin Azimi, Keivan Navi. 基于碳纳米管场效应管的新型三元半加器及乘法器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 423-433.
[2] Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser. 千兆赫片上互联单壁纳米碳管电分析[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 262-271.
[3] De-xuan Zou, Gai-ge Wang, Gai Pan, Hong-wei Qi. 基于修正模拟退火算法及溢出面积模型的固定边界布图规划[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1228-1244.
[4] Liang Geng, Ji-Zhong Shen, Cong-Yuan Xu . 采用内嵌时钟控制技术的低功耗双边沿隐形脉冲触发器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 962-972.
[5] Wei Zhang, You-de Hu, Li-rong Zheng. 基于驻波振荡器的PLL设计与仿真[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 258-264.
[6] Mao-qun Yao, Kai Yang, Cong-yuan Xu, Ji-zhong Shen. 基于RTD三变量通用逻辑门的设计[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 694-699.
[7] Shou-biao Tan, Wen-juan Lu, Chun-yu Peng, Zheng-ping Li, You-wu Tao, Jun-ning Chen. 用于低电压下SRAM灵敏放大器工艺变化鲁棒性时序的多级双复制位线延迟技术[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 700-706.
[8] Ming-jun Ma, Zhong-he Jin, Hui-jie Zhu. 一种联合调制反馈和温度补偿改善闭环MEMS电容式加速度计漂移的方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 497-510.
[9] Kai Huang, Xiao-xu Zhang, Si-wen Xiu, Dan-dan Zheng, Min Yu, De Ma, Kai Huang, Gang Chen, Xiao-lang Yan. 面向多媒体特定应用的剖析和标注相结合MPSoC性能评估方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 135-151.
[10] Hüseyin Oktay Erkol, Hüseyin Demirel. 多自由度系统运动学方程求解的VHDL应用[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1164-1173.
[11] Najam Muhammad Amin, Zhi-gong Wang, Zhi-qun Li. 基于65 nm CMOS工艺且应用于60 GHz接收机的折叠下变频混频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1190-1199.
[12] Xiao-hua Li, Ji-zhong Shen. 或-符合代数系统中的对称变量检测算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1174-1182.
[13] Fa-en Liu, Zhi-gong Wang, Zhi-qun Li, Qin Li, Lu Tang, Ge-liang Yang. 基于90 nm CMOS工艺的31–45.5 GHz注入式锁定分频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1183-1189.
[14] Ting Guo, Zhi-qun Li, Qin Li, Zhi-gong Wang. 应用于硅基毫米波锁相环频率综合器的37GHz宽带可编程模分频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1200-1210.
[15] Qian-qi Le, Guo-wu Yang, William N. N. Hung, Xiao-yu Song, Fu-you Fan. 性能驱动的可靠片上网络分配和映射[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 1009-1020.