Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (9): 724-736    DOI: 10.1631/jzus.C0910660
    
A low-power and low-energy flexible GF(p) elliptic-curve cryptography processor
Hamid Reza Ahmadi, Ali Afzali-Kusha
School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran, Iran
A low-power and low-energy flexible GF(p) elliptic-curve cryptography processor
Hamid Reza Ahmadi, Ali Afzali-Kusha
School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran, Iran
 全文: PDF 
摘要: We investigate the use of two integer inversion algorithms, a modified Montgomery modulo inverse and a Fermat’s Little Theorem based inversion, in a prime-field affine-coordinate elliptic-curve crypto-processor. To perform this, we present a low-power/energy GF(p) affine-coordinate elliptic-curve cryptography (ECC) processor design with a simplified architecture and complete flexibility in terms of the field and curve parameters. The design can use either of the inversion algorithms. Based on the implementations of this design for 168-, 192-, and 224-bit prime fields using a standard 0.13 μm CMOS technology, we compare the efficiency of the algorithms in terms of power/energy consumption, area, and calculation time. The results show that while the Fermat’s theorem approach is not appropriate for the affine-coordinate ECC processors due to its long computation time, the Montgomery modulo inverse algorithm is a good candidate for low-energy implementations. The results also show that the 168-bit ECC processor based on the Montgomery modulo inverse completes one scalar multiplication in only 0.4 s at a 1 MHz clock frequency consuming only 12.92 μJ, which is lower than the reported values for similar designs.
关键词: Elliptic-curve cryptography (ECC)Prime fieldMontgomery multiplicationMontgomery inverseLow-energy    
Abstract: We investigate the use of two integer inversion algorithms, a modified Montgomery modulo inverse and a Fermat’s Little Theorem based inversion, in a prime-field affine-coordinate elliptic-curve crypto-processor. To perform this, we present a low-power/energy GF(p) affine-coordinate elliptic-curve cryptography (ECC) processor design with a simplified architecture and complete flexibility in terms of the field and curve parameters. The design can use either of the inversion algorithms. Based on the implementations of this design for 168-, 192-, and 224-bit prime fields using a standard 0.13 μm CMOS technology, we compare the efficiency of the algorithms in terms of power/energy consumption, area, and calculation time. The results show that while the Fermat’s theorem approach is not appropriate for the affine-coordinate ECC processors due to its long computation time, the Montgomery modulo inverse algorithm is a good candidate for low-energy implementations. The results also show that the 168-bit ECC processor based on the Montgomery modulo inverse completes one scalar multiplication in only 0.4 s at a 1 MHz clock frequency consuming only 12.92 μJ, which is lower than the reported values for similar designs.
Key words: Elliptic-curve cryptography (ECC)    Prime field    Montgomery multiplication    Montgomery inverse    Low-energy
收稿日期: 2009-10-30 出版日期: 2010-09-07
CLC:  TN4  
基金资助: Project supported in part by the  Iran Telecommunication Research Center (ITRC) and the Research Council of University of Tehran
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Hamid Reza Ahmadi
Ali Afzali-Kusha

引用本文:

Hamid Reza Ahmadi, Ali Afzali-Kusha. A low-power and low-energy flexible GF(p) elliptic-curve cryptography processor. Front. Inform. Technol. Electron. Eng., 2010, 11(9): 724-736.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C0910660        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I9/724

[1] Sepehr Tabrizchi, Nooshin Azimi, Keivan Navi. 基于碳纳米管场效应管的新型三元半加器及乘法器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 423-433.
[2] Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser. 千兆赫片上互联单壁纳米碳管电分析[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 262-271.
[3] De-xuan Zou, Gai-ge Wang, Gai Pan, Hong-wei Qi. 基于修正模拟退火算法及溢出面积模型的固定边界布图规划[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1228-1244.
[4] Liang Geng, Ji-Zhong Shen, Cong-Yuan Xu . 采用内嵌时钟控制技术的低功耗双边沿隐形脉冲触发器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 962-972.
[5] Wei Zhang, You-de Hu, Li-rong Zheng. 基于驻波振荡器的PLL设计与仿真[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 258-264.
[6] Mao-qun Yao, Kai Yang, Cong-yuan Xu, Ji-zhong Shen. 基于RTD三变量通用逻辑门的设计[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 694-699.
[7] Shou-biao Tan, Wen-juan Lu, Chun-yu Peng, Zheng-ping Li, You-wu Tao, Jun-ning Chen. 用于低电压下SRAM灵敏放大器工艺变化鲁棒性时序的多级双复制位线延迟技术[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 700-706.
[8] Ming-jun Ma, Zhong-he Jin, Hui-jie Zhu. 一种联合调制反馈和温度补偿改善闭环MEMS电容式加速度计漂移的方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 497-510.
[9] Kai Huang, Xiao-xu Zhang, Si-wen Xiu, Dan-dan Zheng, Min Yu, De Ma, Kai Huang, Gang Chen, Xiao-lang Yan. 面向多媒体特定应用的剖析和标注相结合MPSoC性能评估方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 135-151.
[10] Hüseyin Oktay Erkol, Hüseyin Demirel. 多自由度系统运动学方程求解的VHDL应用[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1164-1173.
[11] Najam Muhammad Amin, Zhi-gong Wang, Zhi-qun Li. 基于65 nm CMOS工艺且应用于60 GHz接收机的折叠下变频混频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1190-1199.
[12] Xiao-hua Li, Ji-zhong Shen. 或-符合代数系统中的对称变量检测算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1174-1182.
[13] Fa-en Liu, Zhi-gong Wang, Zhi-qun Li, Qin Li, Lu Tang, Ge-liang Yang. 基于90 nm CMOS工艺的31–45.5 GHz注入式锁定分频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1183-1189.
[14] Ting Guo, Zhi-qun Li, Qin Li, Zhi-gong Wang. 应用于硅基毫米波锁相环频率综合器的37GHz宽带可编程模分频器[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1200-1210.
[15] Qian-qi Le, Guo-wu Yang, William N. N. Hung, Xiao-yu Song, Fu-you Fan. 性能驱动的可靠片上网络分配和映射[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 1009-1020.