Please wait a minute...
Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (4): 445-463    DOI: 10.1631/FITEE.1601489
Review     
结构化稀疏学习综述
Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu
A systematic review of structured sparse learning
Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu
College of Computer, National University of Defense Technology, Changsha 410073, China; National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China
 全文: PDF 
摘要: 概要:稀疏学习由于其简约特性和计算优势而获得了越来越多的关注,在具有稀疏性的条件下,许多计算问题可以在实践中得到有效的处理。而结构化稀疏学习则进一步将结构信息进行编码,在多个研究领域取得成功。随着各类型结构的发现,人们相继提出了各种结构化正则函数。这些正则函数通过利用特定的结构信息极大提高了稀疏学习算法的性能。在本文中,我们从想法、形式化、算法和应用等方面系统的回顾了结构化稀疏学习。我们将这些算法置于最小化损失函数和惩罚函数的统一框架中,总结了算法的开源软件实现,并比较了典型优化算法解决结构化稀疏学习问题时的计算复杂度。在实验中,我们给出了无监督学习在结构化信号恢复和层次化图像重建中的应用,以及具有图结构引导的逻辑回归的在监督学习中的应用。
关键词: 结构化稀疏学习    
Abstract: High dimensional data arising from diverse scientific research fields and industrial development have led to increased interest in sparse learning due to model parsimony and computational advantage. With the assumption of sparsity, many computational problems can be handled efficiently in practice. Structured sparse learning encodes the structural information of the variables and has been quite successful in numerous research fields. With various types of structures discovered, sorts of structured regularizations have been proposed. These regularizations have greatly improved the efficacy of sparse learning algorithms through the use of specific structural information. In this article, we present a systematic review of structured sparse learning including ideas, formulations, algorithms, and applications. We present these algorithms in the unified framework of minimizing the sum of loss and penalty functions, summarize publicly accessible software implementations, and compare the computational complexity of typical optimization methods to solve structured sparse learning problems. In experiments, we present applications in unsupervised learning, for structured signal recovery and hierarchical image reconstruction, and in supervised learning in the context of a novel graph-guided logistic regression.
Key words: Sparse learning    Structured sparse learning    Structured regularization
收稿日期: 2016-08-21 出版日期: 2017-04-12
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Lin-bo Qiao
Bo-feng Zhang
Jin-shu Su
Xi-cheng Lu

引用本文:

Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1601489        http://www.zjujournals.com/xueshu/fitee/CN/Y2017/V18/I4/445

1 Asaei, A., Bourlard, H., Cevher, V., 2011a. Model-based compressive sensing for multi-party distant speech recognition. Proc. ICASSP, p.4600-4603.
doi: 10.1109/ICASSP.2011.5947379
2 Asaei, A., Taghizadeh, M.J., Bourlard, H., et al., 2011b. Multi-party speech recovery exploiting structured sparsity models. Proc. Conf. on Int. Speech Communication Association, p.192-195.
3 Asaei, A., Bourlard, H., Taghizadeh, M.J., et al., 2014a. Model-based sparse component analysis for reverberant speech localization. Proc. ICASSP, p.1439-1443
doi: 10.1109/ICASSP.2014.6853835
4 Asaei, A., Golbabaee, M., Bourlard, H., et al., 2014b. Structured sparsity models for reverberant speech separation. IEEE/ACM Trans. Audio Speech Lang. Process., 22(3):620-633.
doi: 10.1109/TASLP.2013.2297012
5 Bach, F., 2008a. Consistency of trace norm minimization. J. Mach. Learn. Res., 9:1019-1048.
6 Bach, F., 2008b. Consistency of the group Lasso and multiple kernel learning. J. Mach. Learn. Res., 9:1179-1225.
7 Bach, F., Jenatton, R., Mairal, J., et al., 2011. Convex optimization with sparsity-inducing norms. In: Sra, S., Nowozin, S., Wright, S.J. (Eds.), Optimization for Machine Learning. MIT Press, Cambridge, p.1-35.
8 Bach, F., Jenatton, R., Mairal, J., et al., 2012a. Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn., 4(1):1-106.
doi: 10.1561/2200000015
9 Bach, F., Jenatton, R., Mairal, J., et al., 2012b. Structured sparsity through convex optimization. Stat. Sci., 27(4):450-468.
doi: 10.1214/12-STS394
10 Bach, F., Jordan, M.I., 2006. Learning spectral clustering, with application to speech separation. J. Mach. Learn. Res., 7:1963-2001.
11 Banerjee, O., El Ghaoui, L., d’Aspremont, A., 2008. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9:485-516.
12 Baraniuk, R.G., Cevher, V., Duarte, M.F., et al., 2010. Model-based compressive sensing. IEEE Trans. Inform. Theory, 56(4):1982-2001.
doi: 10.1109/Tit.2010.2040894
13 Beck, A., Teboulle, M., 2003. Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett., 31(3):167-175.
doi: 10.1016/S0167-6377(02)00231-6
14 Beck, A., Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci., 2(1):183-202.
doi: 10.1137/080716542
15 Bengio, S., Pereira, F., Singer, Y., et al., 2009. Group sparse coding. Proc. NIPS, p.82-89.
16 Blei, D.M., Griffiths, T.L., Jordan, M.I., 2010. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM, 57(2):7.
doi: 10.1145/1667053.1667056
17 Borne, K., 2009. Scientific data mining in astronomy. arXiv:0911.0505.
18 Boyd, S., Parikh, N., Chu, E., et al., 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1-122.
doi: 10.1561/2200000016
19 Bruckstein, A.M., Donoho, D.L., Elad, M., 2009. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev., 51(1):34-81.
doi: 10.1137/060657704
20 Candés, E., Tao, T., 2007. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat., 35(6):2313-2351.
doi: 10.1214/009053606000001523
21 Candés, E.J., 2008. The restricted isometry property and its implications for compressed sensing. Comput. Rend. Math., 346(9-10):589-592.
doi: 10.1016/j.crma.2008.03.014
22 Candés, E.J., Recht, B., 2009. Exact matrix completion via convex optimization. Found. Comput. Math., 9(6):717-772.
doi: 10.1007/s10208-009-9045-5
23 Candés, E.J., Romberg, J.K., Tao, T., 2006. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math., 59(8):1207-1223.
doi: 10.1002/Cpa.20124
24 Candés, E.J., Wakin, M.B., Boyd, S.P., 2008. Enhancing sparsity by reweighted 1 minimization. J. Four. Anal. Appl., 14(5):877-905.
doi: 10.1007/s00041-008-9045-x
25 Chandrasekaran, V., Parrilo, P.A., Willsky, A.S., 2012. Latent variable graphical model selection via convex optimization. Ann. Stat., 40(4):1935-1967.
doi: 10.1214/11-AOS949
26 Chartrand, R., Yin, W.T., 2008. Iteratively reweighted algorithms for compressive sensing. Proc. ICASSP, p.3869-3872.
doi: 10.1109/Icassp.2008.4518498
27 Chen, C., Huang, J.Z., 2014. Exploiting the wavelet structure in compressed sensing MRI. Magn. Reson. Imag., 32(10):1377-1389.
doi: 10.1016/j.mri.2014.07.016
28 Chen, C., Li, Y.Q., Huang, J.Z., 2014. Forest sparsity for multi-channel compressive sensing. IEEE Trans. Signal Process., 62(11):2803-2813.
doi: 10.1109/TSP.2014.2318138
29 Chen, H.Y., Sun, Z.G., Yi, F., et al., 2016. BufferBank storage: an economic, scalable and universally usable in-network storage model for streaming data applications. Sci. China Inform. Sci., 59(1):1-15.
doi: 10.1007/s11432-015-5299-5
30 Chen, S., Donoho, D., 1994. Basis pursuit. Proc. Asilomar Conf. on Signals, Systems and Computers, p.41-44.
31 Chen, X., Lin, Q.H., Kim, S., et al., 2012. Smoothing proximal gradient method for general structured sparse regression. Ann. Appl. Stat., 6(2):719-752.
doi: 10.1214/11-AOAS514
32 Combettes, P.L., Pesquet, J.C., 2011. Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., et al. (Eds.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, Berlin, p.185-212.
doi: 10.1007/978-1-4419-9569-8_10
33 Dempster, A.P., 1972. Covariance selection. Biometrics, 28:157-175.
34 Donoho, D.L., Huo, X., 2001. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory, 47(7):2845-2862.
doi: 10.1109/18.959265
35 Donoho, D.L, Drori, I., Stodden, V.C, et al., 2007. SparseLab. http://sparselab.stanford.edu/
36 Duarte, M.F., Eldar, Y.C., 2011. Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process., 59(9):4053-4085.
doi: 10.1109/TSP.2011.2161982
37 Elad, M., 2010. Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing. Springer, Berlin.
doi: 10.1007/978-1-4419-7011-4
38 Fan, J.Q., Li, R.Z., 2011. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc., 96(456):1348-1360.
doi: 10.1198/016214501753382273
39 Fan, J.Q., Lv, J.C., Qi, L., 2011. Sparse high-dimensional models in economics. Ann. Rev. Econ., 3:291-317.
doi: 10.1146/annurev-economics-061109-080451
40 Foucart, S., Lai, M.J., 2009. Sparsest solutions of under-determined linear systems via q -minimization for 0≦q≦1. Appl. Comput. Harmon. Anal., 26(3):395-407.
doi: 10.1016/j.acha.2008.09.001
41 Friedman, J., Hastie, T., Höfling, H., et al., 2007. Pathwise coordinate optimization. Ann. Appl. Stat., 1(2):302-332.
doi: 10.1214/07-Aoas131
42 Friedman, J., Hastie, T., Tibshirani, R., 2008. Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9(3):432-441.
doi: 10.1093/biostatistics/kxm045
43 Garber, D., Hazan, E., 2015. Faster rates for the Frank-Wolfe method over strongly-convex sets. Proc. ICML, p.541-549.
44 Gill, P.E., Murray, W., Saunders, M.A., 2008. User’s Guide for SQOPT Version 7: Software for Large-Scale Linear and Quadratic Programming. http://www-leland.stanford.edu/group/SOL/guides/ sqdoc7.pdf
45 Gong, P.H., Zhang, C.S., Lu, Z.S., et al., 2013. A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. Proc. ICML, p.37-45.
46 Grant, M., Boyd, S., 2013. CVX: Matlab Software for Disciplined Convex Programming. Version 2.0 Beta. http://cvxr.com/cvx/
47 Hazan, E., Agarwal, A., Kale, S., 2007. Logarithmic regret algorithms for online convex optimization. Mach. Learn., 69(2):169-192.
doi: 10.1007/s10994-007-5016-8
48 Hoefling, H., 2010. A path algorithm for the fused Lasso signal approximator. J. Comput. Graph. Stat., 19(4):984-1006.
doi: 10.1198/jcgs.2010.09208
49 Hong, M.Y., Razaviyayn, M., Luo, Z.Q., et al., 2015. A unified algorithmic framework for block-structured optimization involving big data. arXiv:1511.02746.
50 Hu, T.C., Yu, J.H., 2016. Max-margin based Bayesian classifier. Front. Inform. Technol. Electron. Eng., 17(10): 973-981.
doi: 10.1631/FITEE.1601078
51 Huang, J.Z., Zhang, T., Metaxas, D., 2011. Learning with structured sparsity. J. Mach. Learn. Res., 12:3371-3412.
52 Huang, T., Wu, B.L., Lizardi, P., et al., 2005. Detection of DNA copy number alterations using penalized least squares regression. Bioinformatics, 21(20):3811-3817.
doi: 10.1093/bioinformatics/bti646
53 Jacob, L., Obozinski, G., Vert, J.P., 2009. Group Lasso with overlap and graph Lasso. Proc. ICML, p.433-440.
doi: 10.1145/1553374.1553431
54 Jaggi, M., 2013. Revisiting Frank-Wolfe: projection-free sparse convex optimization. Proc. ICML, p.427-435.
55 Jenatton, R., 2011. Structured Sparsity-Inducing Norms: Statistical and Algorithmic Properties with Applications to Neuroimaging. PhD Thesis, École Normale Supérieure de Cachan, Cachan, France.
56 Jenatton, R., Obozinski, G., Bach, F., 2009. Structured sparse principal component analysis. Proc. AISTATS, p.366-373.
57 Jenatton, R., Mairal, J., Bach, F.R., et al., 2010. Proximal methods for sparse hierarchical dictionary learning. Proc. ICML, p.487-494.
58 Jenatton, R., Mairal, J., Obozinski, G., et al., 2011. Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res., 12:2297-2334.
59 Jenatton, R., Gramfort, A., Michel, V., et al., 2012. Multiscale mining of fMRI data with hierarchical structured sparsity. SIAM J. Imag. Sci., 5(3):835-856.
doi: 10.1137/110832380
60 John Lu, Z.Q., 2010. The elements of statistical learning: data mining, inference, and prediction. J. R. Stat. Soc. A, 173(3):693-694.
doi: 10.1111/j.1467-985X.2010.00646_6.x
61 Jones, B., West, M., 2005. Covariance decomposition in undirected Gaussian graphical models. Biometrika, 92(4): 779-786.
doi: 10.1093/biomet/92.4.779
62 Karygianni, S., Frossard, P., 2014. Structured sparse coding for image denoising or pattern detection. Proc. ICASSP, p.3533-3537.
doi: 10.1109/ICASSP.2014.6854258
63 Kim, B.S., Park, J.Y., Gilbert, A.C., et al., 2013. Hierarchical classification of images by sparse approximation. Image Vis. Comput., 31(12):982-991.
doi: 10.1016/j.imavis.2013.10.005
64 Kim, S., Xing, E.P., 2010. Tree-guided group Lasso for multi-task regression with structured sparsity. Proc. ICML, p.543-550.
65 Kim, S., Xing, E.P., 2012. Tree-guided group Lasso for multi-response regression with structured sparsity, with an application to eQTL mapping. Ann. Appl. Stat., 6(3):1095-1117.
doi: 10.1214/12-Aoas549
66 Kim, S., Xing, E.P., 2014. Exploiting genome structure in association analysis. J. Comput. Biol., 21(4):345-360.
doi: 10.1089/cmb.2009.0224
67 Kolar, M., Xing, E.P., 2011. On time varying undirected graphs. Proc. AISTATS, p.407-415.
68 Koren, Y., Bell, R., Volinsky, C., 2009. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37.
doi: 10.1109/MC.2009.263
69 Lacoste-Julien, S., Schmidt, M., Bach, F., 2012. A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method. arXiv:1212.2002.
70 Lai, M.J., Xu, Y.Y., Yin, W.T., 2013. Improved iteratively reweighted least squares for unconstrained smoothed q minimization. SIAM J. Numer. Anal., 51(2):927-957.
doi: 10.1137/110840364
71 Lai, Z.Q., Lam, K.T., Wang, C.L., et al., 2015. Latency-aware DVFS for efficient power state transitions on many-core architectures. J. Supercomput., 71(7):2720-2747.
doi: 10.1007/s11227-015-1415-y
72 Lai, Z.Q., Lam, K.T., Wang, C.L., et al., 2016. PoweRock: power modeling and flexible dynamic power management for many-core architectures. IEEE Syst. J., in press.
doi: 10.1109/JSYST.2015.2499307
73 Leng, C.L., Tang, C.Y., 2012. Sparse matrix graphical models. J. Am. Stat. Assoc., 107(499):1187-1200.
doi: 10.1080/01621459.2012.706133
74 Li, X.X., Mo, L.L., Yuan, X.M., et al., 2014. Linearized alternating direction method of multipliers for sparse group and fused Lasso models. Comput. Stat. Data Anal., 79:203-221.
doi: 10.1016/j.csda.2014.05.017
75 Lin, H.Z., Mairal, J.L., Harchaoui, Z., 2015. A universal catalyst for first-order optimization. Proc. NIPS, p.3384-3392.
76 Liu, H., Palatucci, M., Zhang, J., 2009. Blockwise coordinate descent procedures for the multi-task Lasso, with applications to neural semantic basis discovery. Proc. ICML, p.649-656.
doi: 10.1145/1553374.1553458
77 Liu, J., Ji, S., Ye, J., 2009. SLEP: Sparse Learning with Efficient Projections. http://www.public.asu.edu/symbol~jye02/Software/SLEP
78 Ma, S.Q., Xue, L.Z., Zou, H., 2013. Alternating direction methods for latent variable Gaussian graphical model selection. Neur. Comput., 25(8):2172-2198.
doi: 10.1162/NECO_a_00379
79 Mairal, J., 2013. Optimization with first-order surrogate functions. Proc. ICML, p.783-791.
80 Mairal, J., Bach, F., Ponce, J., et al., 2011. SPAMS: SPArse Modeling Software. http://spams-devel.gforge.inria.fr/
81 Mairal, J., Bach, F., Ponce, J., 2014. Sparse modeling for image and vision processing. Found. Trends Comput. Graph. Vis., 8(2-3):85-283.
doi: 10.1561/0600000058
82 Mallat, S., 2008. A Wavelet Tour of Signal Processing: the Sparse Way (3rd Ed.). Elsevier/Academic Press, Amsterdam.
83 McAuley, J., Ming, J., Stewart, D., et al., 2005. Subband correlation and robust speech recognition. IEEE Trans. Speech Audio Process., 13(5):956-964.
doi: 10.1109/TSA.2005.851952
84 Meier, L., van de Geer, S., Bühlmann, P., 2008. The group Lasso for logistic regression. J. R. Stat. Soc. B, 70(1):53-71.
doi: 10.1111/j.1467-9868.2007.00627.x
85 Meinshausen, N., B#x00FC;hlmann, P., 2006. High-dimensional graphs and variable selection with the Lasso. Ann. Stat., 34(3):1436-1462.
doi: 10.1214/009053606000000281
86 Meinshausen, N., Yu, B., 2008. Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat., 37(1):246-270.
doi: 10.1214/07-AOS582
87 Micchelli, C.A., Morales, J.M., Pontil, M., 2013. Regularizers for structured sparsity. Adv. Comput. Math., 38(3):455-489.
doi: 10.1007/s10444-011-9245-9
88 Mosci, S., Rosasco, L., Santoro, M., et al., 2010. Solving structured sparsity regularization with proximal methods. LNCS, 6322:418-433.
doi: 10.1007/978-3-642-15883-4_27
89 Mougeot, M., Picard, D., Tribouley, K., 2013. Grouping strategies and thresholding for high dimensional linear models. J. Stat. Plan. Infer., 143(9):1417-1438.
doi: 10.1016/j.jspi.2013.03.001
90 Najafian, M., 2016. Acoustic Model Selection for Recognition of Regional Accented Speech. PhD Thesis, University of Birmingham, Birmingham, UK.
91 Negahban, S.N., Ravikumar, P., Wainwright, M.J., et al., 2012. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. Stat. Sci., 27(4):538-557.
doi: 10.1214/12-Sts400
92 Nemirovski, A., 2004. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim., 15(1):229-251.
doi: 10.1137/S1052623403425629
93 Nesterov, Y., 2004. Introductory Lectures on Convex Optimization: a Basic Course. Springer Science ∧ Business Media.
doi: 10.1007/978-1-4419-8853-9
94 Nesterov, Y., 2009. Primal-dual subgradient methods for convex problems. Math. Program., 120(1):221-259.
doi: 10.1007/s10107-007-0149-x
95 Parikh, N., Boyd, S., 2014. Proximal algorithms. Found. Trends Optim., 1(3):127-239.
doi: 10.1561/2400000003
96 Peng, Z.M., Wu, T.Y., Xu, Y.Y., et al., 2016. Coordinate friendly structures, algorithms and applications. arXiv:1601.00863.
97 Qiao, L.B., Lin, T.Y., Jiang, Y.G., et al., 2016a. On stochastic primal-dual hybrid gradient approach for compositely regularized minimization. Proc. European Conf. on Artificial Intelligence, p.167-174.
doi: 10.3233/978-1-61499-672-9-167
98 Qiao, L.B., Zhang, B.F., Su, J.S., et al., 2016b. Linearized alternating direction method of multipliers for constrained nonconvex regularized optimization. Proc. Asian Conf. on Machine Learning, p.97-109.
99 Qiao, L.B., Zhang, B.F., Zhuang, L., et al., 2016c. An efficient algorithm for tensor principal component analysis via proximal linearized alternating direction method of multipliers. Proc. Int. Conf. on Advanced Cloud and Big Data, p.283-288.
doi: 10.1109/CBD.2016.056
100 Rakotomamonjy, A., 2011. Surveying and comparing simultaneous sparse approximation (or group-Lasso) algorithms. Signal Process., 91(7):1505-1526.
doi: 10.1016/j.sigpro.2011.01.012
101 Rasmussen, C.E., Ghahramani, Z., 2001. Occam’s razor. Proc. NIPS, p.294-300.
102 Rendle, S., Schmidt-Thieme, L., 2010. Pairwise interaction tensor factorization for personalized tag recommendation. Proc. 3rd ACM Int. Conf. on Web Wearch and Data Mining, p.81-90.
doi: 10.1145/1718487.1718498
103 Roth, V., Fischer, B., 2008. The group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. Proc. ICML, p.848-855.
doi: 10.1145/1390156.1390263
104 Rudin, L.I., Osher, S., Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Phys. D, 60(1-4):259-268.
doi: 10.1016/0167-2789(92)90242-F
105 Scheinberg, K., Ma, S., Goldfarb, D., 2010. Sparse inverse covariance selection via alternating linearization methods. Proc. NIPS, p.2101-2109.
106 Selesnick, I.W., Bayram, I., 2014. Sparse signal estimation by maximally sparse convex optimization. IEEE Trans. Signal Process., 62(5):1078-1092.
doi: 10.1109/TSP.2014.2298839
107 Simon, N., Friedman, J., Hastie, T., et al., 2013. A sparse-group Lasso. J. Comput. Graph. Stat., 22(2):231-245.
doi: 10.1080/10618600.2012.681250
108 Su, W.J., Boyd, S., Candés, E., 2014. A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. Proc. NIPS, p.2510-2518.
109 Sun, Y.P., Chen, S.H., Han, B., et al., 2015a. A novel location privacy mining threat in vehicular Internet access service. LNCS, 9204:467-476.
doi: 10.1007/978-3-319-21837-3_46
110 Sun, Y.P., Zhang, B.F., Zhao, B.K., et al., 2015b. Mix-zones optimal deployment for protecting location privacy in VANET. Peer-to-Peer Netw. Appl., 8(6):1108-1121.
doi: 10.1007/s12083-014-0269-z
111 Suzuki, T.J., 2013. Dual averaging and proximal gradient descent for online alternating direction multiplier method. Proc. ICML, p.392-400.
112 Takacs, G., Pilaszy, I., Nemeth, B., et al., 2009. Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res., 10:623-656.
113 Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B, 58(1):267-288.
114 Tibshirani, R., Wang, P., 2008. Spatial smoothing and hot spot detection for CGH data using the fused Lasso. Biostatistics, 9(1):18-29.
doi: 10.1093/biostatistics/kxm013
115 Tibshirani, R., Saunders, M., Rosset, S., et al., 2005. Sparsity and smoothness via the fused Lasso. J. R. Stat. Soc. B, 67(1):91-108.
doi: 10.1111/j.1467-9868.2005.00490.x
116 Toh, K., Todd, M.J., T#x00FC;t#x00FC;nc#x00FC;, R.H., 2006. SDPT3 Version 4.0: a Matlab Software for Semidefinite-Quadratic-Linear Programming. http://www.math.nus.edu.sg/symbol˜176mattohkc/sdpt3.html
117 Tropp, J.A., 2004. Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50(10):2231-2242.
doi: 10.1109/Tit.2004.834793
118 Tropp, J.A., Gilbert, A.C., Muthukrishnan, S., et al., 2003. Improved sparse approximation over quasi-incoherent dictionaries. Proc. Int. Conf. on Image Processing, p.37-40.
doi: 10.1109/ICIP.2003.1246892
119 Tseng, P., 2008. On Accelerated Proximal Gradient Methods for Convex-Concave Optimization. http://www.mit.edu/dimitrib/PTseng/papers/apgm.pdf
120 Tseng, P., Yun, S., 2009. A coordinate gradient descent method for nonsmooth separable minimization. Math. Program., 117(1):387-423.
doi: 10.1007/s10107-007-0170-0
121 van den Berg, E., Friedlander, M.P., 2007. SPGL1: a Solver for Large-Scale Sparse Reconstruction. http://www.cs.ubc.ca/labs/scl/spgl1
122 Villa, S., Rosasco, L., Mosci, S., et al., 2014. Proximal methods for the latent group Lasso penalty. Compt. Optim. Appl., 58(2):381-407.
doi: 10.1007/s10589-013-9628-6
123 Vincent, M., Hansen, N.R., 2014. Sparse group Lasso and high dimensional multinomial classification. Comput. Stat. Data Anal., 71:771-786.
doi: 10.1016/j.csda.2013.06.004
124 Wainwright, M.J., Jordan, M.I., 2008. Graphical models, exponential families, and variational inference. Found. Trend. Mach. Learn., 1(1-2):1-305.
doi: 10.1561/2200000001
125 Wang, H.S., Leng, C.L., 2008. A note on adaptive group Lasso. Comput. Stat. Data Anal., 52(12):5277-5286.
doi: 10.1016/j.csda.2008.05.006
126 Wang, L.C., You, Y., Lian, H., 2013. A simple and efficient algorithm for fused Lasso signal approximator with convex loss function. Comput. Stat., 28(4):1699-1714.
doi: 10.1007/s00180-012-0373-6
127 Wang, Y., Wang, J.J., Xu, Z.B., 2013. On recovery of block-sparse signals via mixed 2/q (0<≦1) norm minimization. EURASIP J. Adv. Signal Process., 2013: 1-17.
doi: 10.1186/1687-6180-2013-76
128 Wen, Z., Goldfarb, D., Scheinberg, K., 2012. Block coordinate descent methods for semidefinite programming. In:: Anjos, M.F., Lasserre, J.B. (Eds.), Handbook on Semidefinite, Conic and Polynomial Optimization. Springer US, Boston, p.533-564.
doi: 10.1007/978-1-4614-0769-0_19
129 Wermuth, N., 1976. Analogies between multiplicative models for contingency tables and covariance selection. Biometrics, 32:95-108.
130 Wille, A., B#x00FC;hlmann, P., 2006. Low-order conditional independence graphs for inferring genetic networks. Stat. Appl. Genet. Mol. Biol., 5(1).
doi: 10.2202/1544-6115.1170
131 Wrinch, D., Jeffreys, H., 1921. On certain fundamental principles of scientific inquiry. Phil. Mag., 42(249):369-390.
doi: 10.1080/14786442108633773
132 Wu, Y.L., Lu, X.C., Su, J.S., et al., 2016. An efficient searchable encryption against keyword guessing attacks for sharable electronic medical records in cloud-based system. J. Med. Syst., 40:258.
doi: 10.1007/s10916-016-0609-z
133 Xiao, J.J., Qiao, L.B., Stolkin, R., et al., 2016. Distractor-supported single target tracking in extremely cluttered scenes. LNCS, 9908:121-136.
doi: 10.1007/978-3-319-46493-0_8
134 Xiao, L., Zhang, T., 2014. A proximal stochastic gradient method with progressive variance reduction. SIAM J. Optim., 24(4):2057-2075.
doi: 10.1137/140961791
135 Xie, H., Tong, R.F., 2016. Image meshing via hierarchical optimization. Front. Inform. Technol. Electron. Eng., 17(1):32-40.
doi: 10.1631/FITEE.1500171
136 Xie, Y.C., Huang, H., Hu, Y., et al., 2016. Applications of advanced control methods in spacecrafts: progress, challenges, and future prospects. Front. Inform. Technol. Electron. Eng., 17(9):841-861.
doi: 10.1631/FITEE.1601063
137 Xie, Z.X., Xu, Y., 2014. Sparse group Lasso based uncertain feature selection. Int. J. Mach. Learn. Cybern., 5(2):201-210.
doi: 10.1007/s13042-013-0156-6
138 Xu, X., Zhang, B.F., Zhong, Q.X., 2005. Text categorization using SVMs with Rocchio ensemble for Internet information classification. LNCS, 3619:1022-1031.
doi: 10.1007/11534310_107
139 Xu, X., Hu, D.W., Lu, X.C., 2007. Kernel-based least squares policy iteration for reinforcement learning. IEEE Trans. Neur. Netw., 18(4):973-992.
doi: 10.1109/tnn.2007.899161
140 Xu, X., Liu, C.M., Yang, S.X., et al., 2011. Hierarchical approximate policy iteration with binary-tree state space decomposition. IEEE Trans. Neur. Netw., 22(12):1863-1877.
doi: 10.1109/tnn.2011.2168422
141 Xu, Z., Chang, X., Xu, F., et al., 2012. L1/2<> regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neur. Netw. Learn. Syst., 23(7):1013-1027.
doi: 10.1109/TNNLS.2012.2197412
142 Yang, J.F., Yuan, X.M., 2013. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput., 82:301-329.
doi: 10.1090/S0025-5718-2012-02598-1
143 Yang, X.J., Liao, X.K., Xu, W.X., et al., 2010. Th-1: China’s first petaflop supercomputer. Front. Comput. Sci. China, 4(4):445-455.
doi: 10.1007/s11704-010-0383-x
144 Yang, X.J., Liao, X.K., Lu, K., et al., 2011. The TianHe-1A supercomputer: its hardware and software. J. Comput. Sci. Technol., 26(3):344-351.
doi: 10.1007/s11390-011-1137-4
145 Ye, G.B., Xie, X.H., 2011. Split Bregman method for large scale fused Lasso. Comput. Stat. Data Anal., 55(4):1552-1569.
doi: 10.1016/j.csda.2010.10.021
146 Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B, 68(1):49-67.
doi: 10.1111/j.1467-9868.2005.00532.x
147 Yuan, M., Lin, Y., 2007. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19-35.
doi: 10.1093/biomet/asm018
148 Yuan, M., Yang, B.X., Ma, Y.D., et al., 2015. Multi-scale UDCT dictionary learning based highly undersampled MR image reconstruction using patch-based constraint splitting augmented Lagrangian shrinkage algorithm. Front. Inform. Technol. Electron. Eng., 16(12):1069-1087.
doi: 10.1631/FITEE.1400423
149 Zhang, B.F., Su, J.S., Xu, X., 2006. A class-incremental learning method for multi-class support vector machines in text classification. Proc. ICMLC, p.2581-2585.
doi: 10.1109/ICMLC.2006.258853
150 Zhang, C.H., 2010. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat., 38(2):894-942.
doi: 10.1214/09-AOS729
151 Zhang, S.Z., Wang, K., Chen, B.L., et al., 2011. A new framework for co-clustering of gene expression data. LNCS, 7036:1-12.
doi: 10.1007/978-3-642-24855-9_1
152 Zhang, T., 2009. Some sharp performance bounds for least squares regression with L1 regularization. Ann. Stat., 37(5A):2109-2144.
doi: 10.1214/08-AOS659
153 Zhang, T., 2010. Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res., 11:1081-1107.
154 Zhang, T., 2013. Multi-stage convex relaxation for feature selection. Bernoulli, 19(5B):2277-2293.
doi: 10.3150/12-BEJ452
155 Zhang, T.Z., Ghanem, B., Liu, S., et al., 2012. Robust visual tracking via multi-task sparse learning. Proc. CVPR, p.2042-2049.
doi: 10.1109/CVPR.2012.6247908
156 Zhang, T.Z., Ghanem, B., Liu, S., et al., 2013. Robust visual tracking via structured multi-task sparse learning. Int. J. Comput. Vis., 101(2):367-383.
doi: 10.1007/s11263-012-0582-z
157 Zhang, T.Z., Jia, K., Xu, C.S., et al., 2014. Partial occlusion handling for visual tracking via robust part matching. Proc. CVPR, p.1258-1265.
doi: 10.1109/CVPR.2014.164
158 Zhang, T.Z., Liu, S., Ahuja, N., et al., 2015a. Robust visual tracking via consistent low-rank sparse learning. Int. J. Comput. Vis., 111(2):171-190.
doi: 10.1007/s11263-014-0738-0
159 Zhang, T.Z., Liu, S., Xu, C.S., et al., 2015b. Structural sparse tracking. Proc. CVPR, p.150-158.
doi: 10.1109/CVPR.2015.7298610
160 Zhang, Y., Yang, J., Yin, W., 2011. YALL1: Your Algorithms for L1. http://yall1.blogs.rice.edu
161 Zhang, Z.K., Zhou, T., Zhang, Y.C., 2011. Tag-aware recommender systems: a state-of-the-art survey. J. Comput. Sci. Technol., 26:767-777.
doi: 10.1007/s11390-011-0176-1
162 Zhao, P., Yu, B., 2006. On model selection consistency of Lasso. J. Mach. Learn. Res., 7:2541-2563.
163 Zhao, P., Yu, B., 2007. Stagewise Lasso. J. Mach. Learn. Res., 8:2701-2726.
164 Zhao, P., Rocha, G., Yu, B., 2009. The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat., 37(6a):3468-3497.
doi: 10.1214/07-Aos584
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[2] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[3] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[4] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[5] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[6] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[7] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[8] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[10] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[11] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[12] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[13] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[14] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[15] De-long Feng, Ming-qing Xiao, Ying-xi Liu, Hai-fang Song, Zhao Yang, Ze-wen Hu. 基于信息熵和深度置信网络的涡轮发动机在有限传感器下的故障诊断仿真研究[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1287-1304.