Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (5): 435-448    DOI: 10.1631/FITEE.1500364
    
基于头朝向细胞和网格细胞的生物启发式路径整合模型
Yang Zhou, De-wei Wu
College of Information and Navigation, Air Force Engineering University, Xi'an 710077, China
Biologically inspired model of path integration based on head direction cells and grid cells
Yang Zhou, De-wei Wu
College of Information and Navigation, Air Force Engineering University, Xi'an 710077, China
 全文: PDF 
摘要: 目的:以脑神经科学为基础,结合头朝向细胞(head direction cells)和网格细胞(grid cells)的放电特性,为运行体智能自主导航提供一种生物启发式的路径整合模型。
创新点:分别建立了头朝向细胞和网格细胞与方向和距离间的对应关系,以此解决路径整合问题。并针对模型的实现提出了网格间距和放电野半径的设置条件。
方法:首先,采用头朝向细胞感知其表征方向上的速度,并对运行方向进行度量。其次,相对头朝向细胞引入对应的距离细胞(distance cells),用于处理各头朝向细胞感知的速度,并对相对方位进行度量。最后,距离细胞处理得到的位移输入到网格细胞中用于计算各网格细胞的放电率,并结合网格细胞的放电样式,对运行距离进行度量。以此,运行体通过各类细胞的放电情况感知运行方向、相对方位以及运行距离,最终实现路径整合。
结论:本文有效地将头朝向细胞和网格细胞的放电特性与路径整合所需的方向和距离进行了关联。运行体能够通过感知各类细胞的放电情况实现路径整合,且实现的路径整合性能具有一定稳定性。
关键词: 头朝向细胞网格细胞路径整合仿生导航    
Abstract: Some neurons in the brain of freely moving rodents show special firing pattern. The firing of head direction cells (HDCs) and grid cells (GCs) is related to the moving direction and distance, respectively. Thus, it is considered that these cells play an important role in the rodents’ path integration. To provide a bionic approach for the vehicle to achieve path integration, we present a biologically inspired model of path integration based on the firing characteristics of HDCs and GCs. The detailed implementation process of this model is discussed. Besides, the proposed model is realized by simulation, and the path integration performance is analyzed under different conditions. Simulations validate that the proposed model is effective and stable.
Key words: Head direction cells (HDCs)    Grid cells (GCs)    Path integration    Bionic navigation
收稿日期: 2015-10-21 出版日期: 2016-05-04
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yang Zhou
De-wei Wu

引用本文:

Yang Zhou, De-wei Wu. Biologically inspired model of path integration based on head direction cells and grid cells. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 435-448.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500364        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I5/435

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[5] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[6] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[7] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[8] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[9] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[10] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.