Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (5): 389-402    DOI: 10.1631/FITEE.1500385
    
基于稀疏噪声数据的家的位置推断:模型与应用
Tian-ran Hu, Jie-bo Luo, Henry Kautz, Adam Sadilek
Computer Science Department, University of Rochester, NY 14623, USA
Home location inference from sparse and noisy data: models and applications
Tian-ran Hu, Jie-bo Luo, Henry Kautz, Adam Sadilek
Computer Science Department, University of Rochester, NY 14623, USA
 全文: PDF 
摘要: 目的:家,是人们生活的中心。由于家的特殊意义,在对于人类活动的研究中,确定家的位置就显得尤为重要。本文旨在从一个人的签到记录上准确预测家的具体位置(精度在100米以内)。
创新点:由于家的位置属于隐私,我们无法,也不能直接使用用户的隐私数据来进行研究。因此数据的采集和近似是第一个难题。本文的解决方法是认为人们在家里说的话跟在外面说的话不一样。由于人们在家里签到会说一些特点的词汇,比如“睡觉”、“洗澡”,等等。我们收集了带有这样词汇的签到,然后把这样的签到句子经由多人筛选。如果所有人都认为某一条签到是来自家里的,我们就认为这个签到的位置是发送者的家的位置。
方法:从人们的签到中抽取一些关键的特征,再把这些特征经由数据挖掘的算法提炼得出一个综合的判断。我们考虑的特征包括,人们出现在某地点的频率、时间,以及是否在夜间出现等等。
结论:实验证明,可以以70%+的准确率预测70%+的活跃社交网络用户,而且精度是100米以内。
关键词: 家的位置移动模式医疗保健    
Abstract: Accurate home location is increasingly important for urban computing. Existing methods either rely on continuous (and expensive) Global Positioning System (GPS) data or suffer from poor accuracy. In particular, the sparse and noisy nature of social media data poses serious challenges in pinpointing where people live at scale. We revisit this research topic and infer home location within 100 m×100 m squares at 70% accuracy for 76% and 71% of active users in New York City and the Bay Area, respectively. To the best of our knowledge, this is the first time home location has been detected at such a fine granularity using sparse and noisy data. Since people spend a large portion of their time at home, our model enables novel applications. As an example, we focus on modeling people’s health at scale by linking their home locations with publicly available statistics, such as education disparity. Results in multiple geographic regions demonstrate both the effectiveness and added value of our home localization method and reveal insights that eluded earlier studies. In addition, we are able to discover the real buzz in the communities where people live.
Key words: Home location    Mobility patterns    Healthcare
收稿日期: 2015-11-07 出版日期: 2016-05-04
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Tian-ran Hu
Jie-bo Luo
Henry Kautz
Adam Sadilek

引用本文:

Tian-ran Hu, Jie-bo Luo, Henry Kautz, Adam Sadilek. Home location inference from sparse and noisy data: models and applications. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 389-402.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500385        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I5/389

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[3] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[4] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[5] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[6] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[7] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[8] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.