Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (4): 309-324    DOI: 10.1631/FITEE.1500369
    
通过情景化人工机构(SAI)实现灵活的危机管理校准
Maiquel de Brito, Lauren Thévin, Catherine Garbay, Olivier Boissier, Jomi Fred Hübner
Federal University of Santa Catarina, UFSC/CTC/DAS/PPGEAS - PO Box 476, Florianópolis, SC 88040-900, Brazil; LIG/Université de Grenoble, Grenoble 38041, France; Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol, MINES Saint-Etienne, Saint-Etienne 42023, France
Supporting flexible regulation of crisis management by means of situated artificial institution
Maiquel de Brito, Lauren Thévin, Catherine Garbay, Olivier Boissier, Jomi Fred Hübner
Federal University of Santa Catarina, UFSC/CTC/DAS/PPGEAS - PO Box 476, Florianópolis, SC 88040-900, Brazil; LIG/Université de Grenoble, Grenoble 38041, France; Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol, MINES Saint-Etienne, Saint-Etienne 42023, France
 全文: PDF 
摘要: 目的:将规则置于情景中,提供一个能够识别事态的危机管理调节方案。
创新点:在情景状态和规范状态之间引入本构关系,实现了规范校准和情景评估的松耦合,从而使规范不是指代情景状况而是事态函数,即通过本构规则构成对情景状况的制度性解释。
方法:首先介绍了危机管理的目标以及危机管理协同平台的应用。以一个简单但具有普遍意义的危机管理案例——受危机影响的区域疏散——为背景,定义了危机管理中的三类角色。接着阐述了由混合多智能体系统、混合互动以及规范系统构成的用于支持危机管理的系统,并分析人在危机管理中的合作。然后基于环境因素、事态函数、本构规则以及规范四个方面详细阐述了情景化人工机构(SAI)以及SAI在危机管理中的相应实现,分析了SAI对于危机管理的优势与贡献:包括比如情景解释的分歧、保持独立的规范性和本构关系、在具体情景中设计有效规范集和其生命周期、提高系统的自主性等。最后表明,物理情形的变化将引起本构规则的变化,从而激活相应的规范。
结论:本文的研究解决了危机管理工具面临的两个问题——清晰而有条理的协同和灵活性,能够有效处理事态解释的差异、规范的不一致性、事态演化和系统的自治水平等问题。
关键词: 情景化人工机构(SAI)规范系统触知互动危机管理    
Abstract: This paper highlights the use of situated artificial institution (SAI) within a hybrid, interactive, normative multi-agent system to regulate human collaboration in crisis management. Norms regulate the actions of human actors based on the dynamics of the environment in which they are situated. This dynamics results from both environment evolution and actors’ actions. Our objective is to situate norms in the environment in order to provide a context-aware crisis regulation. However, this coupling must be a loose one to keep both levels independent and easy-to-change in order to face the complex and changing crisis situations. To that aim, we introduce a constitutive level between environmental and normative states providing a loose coupling of normative regulation with environment evolution. Norms are thus no more referring to environmental facts but to status functions, i.e., the institutional interpretation of environmental facts through constitutive rules. We present how this declarative and distinct SAI modelling succeeds in managing the crisis with a context-aware crisis regulation.
Key words: Situated artificial institutions (SAIs)    Normative system    Tangible interaction    Crisis management
收稿日期: 2015-10-30 出版日期: 2016-04-05
CLC:  TP18  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Maiquel de Brito
Lauren Thévin
Catherine Garbay
Olivier Boissier
Jomi Fred Hübner

引用本文:

Maiquel de Brito, Lauren Thévin, Catherine Garbay, Olivier Boissier, Jomi Fred Hübner. Supporting flexible regulation of crisis management by means of situated artificial institution. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 309-324.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500369        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I4/309

[1] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. 用于解决非线性受电弓系统的启发式神经网络计算[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 464-484.
[2] Nan-ning Zheng, Zi-yi Liu, Peng-ju Ren, Yong-qiang Ma, Shi-tao Chen, Si-yu Yu, Jian-ru Xue, Ba-dong Chen, Fei-yue Wang. 混合-增强智能:协作与认知[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 153-179.
[3] Jian-ru Xue, Di Wang, Shao-yi Du, Di-xiao Cui, Yong Huang, Nan-ning Zheng. 无人车自主定位和障碍物感知的视觉主导多传感器融合方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 122-138.
[4] Bo-hu Li, Bao-cun Hou, Wen-tao Yu, Xiao-bing Lu, Chun-wei Yang. 人工智能在智能制造领域的应用研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 86-96.
[5] Hao Fang, Shao-lei Lu, Jie Chen, Wen-jie Chen. 基于面向任务的协同特征向量的联盟形成算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 139-148.
[6] Wei Li, Wen-jun Wu, Huai-min Wang, Xue-qi Cheng, Hua-jun Chen, Zhi-hua Zhou, Rong Ding. AI2.0时代的群体智能[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 15-43.
[7] Tao-cheng Hu, Jin-hui Yu. 基于最大间隔的贝叶斯分类器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 973-981.
[8] Jian-hua Dai, Hu Hu, Guo-jie Zheng, Qing-hua Hu, Hui-feng Han, Hong Shi. 区间值信息系统中基于信息熵的属性约简[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 919-928.
[9] Jo?o Carneiro, Diogo Martinho, Goreti Marreiros, Paulo Novais. 应用于普适群体决策的智能谈判模型[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 296-308.
[10] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. 模糊操作时间约束下的多模过程优化:声明式建模方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[11] Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang. 后胚胎期小鼠外膝体和上丘双眼分离的发育[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 807-812.
[12] Zhi-qiang Feng, Cun-gen Liu, Hu Huang. 基于区间值模糊粗糙集的知识建模及相似性推理:焊接变形预报[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 636-650.
[13] Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. 基于非线性支持向量机和遗传算法的移动ECG质量评估[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 564-573.
[14] Feng-fei Zhao, Zheng Qin, Zhuo Shao, Jun Fang, Bo-yan Ren. 用于在线值函数近似的贪婪特征替换方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 223-231.
[15] Ali Uysal, Raif Bayir. Real-time condition monitoring and fault diagnosis in switched reluctance motors with Kohonen neural network[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(12): 941-952.