Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (1): 55-66    DOI: 10.1631/FITEE.15a0160
    
Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter
State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter
Qi-yan TIAN,Jian-hua WEI,Jin-hui FANG(),Kai GUO
State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1392 KB)   HTML
摘要:

This paper presents a velocity controller for the cutting system of a trench cutter (TC). The cutting velocity of a cutting system is affected by the unknown load characteristics of rock and soil. In addition, geological conditions vary with time. Due to the complex load characteristics of rock and soil, the cutting load torque of a cutter is related to the geological conditions and the feeding velocity of the cutter. Moreover, a cutter’s dynamic model is subjected to uncertainties with unknown effects on its function. In this study, to deal with the particular characteristics of a cutting system, a novel adaptive fuzzy integral sliding mode control (AFISMC) is designed for controlling cutting velocity. The model combines the robust characteristics of an integral sliding mode controller with the adaptive adjusting characteristics of an adaptive fuzzy controller. The AFISMC cutting velocity controller is synthesized using the backstepping technique. The stability of the whole system including the fuzzy inference system, integral sliding mode controller, and the cutting system is proven using the Lyapunov theory. Experiments have been conducted on a TC test bench with the AFISMC under different operating conditions. The experimental results demonstrate that the proposed AFISMC cutting velocity controller gives a superior and robust velocity tracking performance.

Abstract:

This paper presents a velocity controller for the cutting system of a trench cutter (TC). The cutting velocity of a cutting system is affected by the unknown load characteristics of rock and soil. In addition, geological conditions vary with time. Due to the complex load characteristics of rock and soil, the cutting load torque of a cutter is related to the geological conditions and the feeding velocity of the cutter. Moreover, a cutter’s dynamic model is subjected to uncertainties with unknown effects on its function. In this study, to deal with the particular characteristics of a cutting system, a novel adaptive fuzzy integral sliding mode control (AFISMC) is designed for controlling cutting velocity. The model combines the robust characteristics of an integral sliding mode controller with the adaptive adjusting characteristics of an adaptive fuzzy controller. The AFISMC cutting velocity controller is synthesized using the backstepping technique. The stability of the whole system including the fuzzy inference system, integral sliding mode controller, and the cutting system is proven using the Lyapunov theory. Experiments have been conducted on a TC test bench with the AFISMC under different operating conditions. The experimental results demonstrate that the proposed AFISMC cutting velocity controller gives a superior and robust velocity tracking performance.

Key words: Cutting system    Electro-hydraulic system    Cutting velocity control    Adaptive fuzzy integral sliding mode control
收稿日期: 2015-06-01 出版日期: 2016-01-05
CLC:  TP271.3  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
  
  
ω/vf Z NZ VS S M B VB
Z Z Z Z NZ VS NS S
NZ Z Z NZ VS NS S NM
VS Z NZ VS NS S NM M
S NZ VS NS S NM M NB
M VS NS S NM M NB B
B NS S NM M NB B VB
VB S NM M NB B VB VB
  
  
  
  
Parameter Value
λ 20
k 11 500
k21 100
Φ 0.5
k11 20
k12 10-6
k21 10-6
  
  
  
  
  
  
  
  
  
  
  
  
1 Ahn KK , Chau NHT , Truong DQ . Robust force control of a hybrid actuator using quantitative feedback theory. J. Mech. Sci. Technol2007, 21(12): 2048-2058 doi: 10.1007/BF03177463
doi: 10.1007/BF03177463
2 Busquets E , Ivantysynova M . Discontinuous projection-based adaptive robust control for displacement-controlled actuators. J. Dyn. Syst. Meas. Contr 2015, 137(8): 081007 doi: 10.1115/1.4030064
doi: 10.1115/1.4030064
3 Cerman O . Fuzzy model reference control with adaptation mechanism. Expert Syst. Appl. 2013, 40(13): 5181-5187 doi: 10.1016/j.eswa.2013.03.014
doi: 10.1016/j.eswa.2013.03.014
4 Chen CY , Liu LQ , Cheng CC . Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system. Contr. Eng. Pract. 2008, 16(6): 658-673 doi: 10.1016/j.conengprac.2007.08.005
doi: 10.1016/j.conengprac.2007.08.005
5 Chiang MH , Lee LW , Tsai JJ . The concurrent implementation of high velocity control performance and high energy efficiency for hydraulic injection moulding machines. Int. J. Adv. Manuf. Technol. 2004, 23(3): 256-262 doi: 10.1007/s00170-003-1652-8
doi: 10.1007/s00170-003-1652-8
6 Chiang MH , Yeh YP , Yang FL . Integrated control of clamping force and energy-saving in hydraulic injection moulding machines using decoupling fuzzy sliding-mode control. Int. J. Adv. Manuf. Technol. 2005, 27(1): 53-62 doi: 10.1007/s00170-004-2138-z
doi: 10.1007/s00170-004-2138-z
7 Daher N , Ivantysynova M . System synthesis and controller design of a novel pump controlled steer-by-wire system employing modern control techniques. Proc. ASME/BATH Symp on Fluid Power and Motion Control. 2013: 1-10 doi: 10.1115/FPMC2013-4410
doi: 10.1115/FPMC2013-4410
8 Daher N , Ivantysynova M . An indirect adaptive velocity controller for a novel steer-by-wire system. J. Dyn. Syst. Meas. Contr. 2014, 136(5): 051012 doi: 10.1115/1.4027172
doi: 10.1115/1.4027172
9 Guo K , Wei JH , Fang JH . Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer. Mechatronics, 201527: 47-56 doi: 10.1016/j.mechatronics.2015.02.003
doi: 10.1016/j.mechatronics.2015.02.003
10 Kalyoncu M , Haydim M . Mathematical modelling and fuzzy logic based position control of an electrohydraulic servosystem with internal leakage. Mechatronics. 2009, 19(6): 847-858 doi: 10.1016/j.mechatronics.2009.04.010
doi: 10.1016/j.mechatronics.2009.04.010
11 Lin J , Huang Z.Z . A hierarchical fuzzy approach to supervisory control of robot manipulators with oscillatory bases. Mechatronics. 2007, 17(10): 589-600 doi: 10.1016/j.mechatronics.2007.07.008
doi: 10.1016/j.mechatronics.2007.07.008
12 Lin Y , Shi Y , Burton R . Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/ASME Trans. Mech. 2013, 18 (1) : 1 -10 doi: 10.1109/TMECH.2011.2160959
doi: 10.1109/TMECH.2011.2160959
13 Merritt HE . Hydraulic Control Systems.. John Wiley & Sons, New York, USA. 1967
14 Minav TA , Laurila LIE , Pyrh?nen JJ . Analysis of electro-hydraulic lifting system's energy efficiency with direct electric drive pump control. Autom. Constr. 2013, 30 : 144 -150 doi: 10.1016/j.autcon.2012.11.009
doi: 10.1016/j.autcon.2012.11.009
15 Sha DH , Bajic VB , Yang HY . New model and sliding mode control of hydraulic elevator velocity tracking system. Simul. Practice Theory. 2002, 9 (6-8) : 365 -385 doi: 10.1016/S1569-190X(02)00058-8
doi: 10.1016/S1569-190X(02)00058-8
16 Shi Y , Huang J , Yu B . Robust tracking control of networked control systems: application to a networked DC motor. IEEE Trans. Ind. Electron. 2013, 60 (12) : 5864 -5874 doi: 10.1109/TIE.2012.2233692
doi: 10.1109/TIE.2012.2233692
17 Truong DQ , Ahn KK . Force control for hydraulic load simulator using self-tuning grey predictor—fuzzy PID. Mechatronics. 2009, 19(2): 233-246 doi: 10.1016/j.mechatronics.2008.07.007
doi: 10.1016/j.mechatronics.2008.07.007
18 Truong DQ , Ahn KK . Force control for press machines using an online smart tuning fuzzy PID based on a robust extended Kalman filter. Expert Syst. Appl. 2011, 38 (5) : 5879 -5894 doi: 10.1016/j.eswa.2010.11.035
doi: 10.1016/j.eswa.2010.11.035
19 Wang DY , Lin X , Zhang Y . Fuzzy logic control for a parallel hybrid hydraulic excavator using genetic algorithm. Autom. Constr. 2011, 20 (5): 581 -587 doi: 10.1016/j.autcon.2010.11.024
doi: 10.1016/j.autcon.2010.11.024
20 Wang LK , Book WJ , Huggins JD . Application of singular perturbation theory to hydraulic pump controlled systems. IEEE/ASME Trans. Mech. 2012, 17(2): 251-259 doi: 10.1109/TMECH.2010.2096230
doi: 10.1109/TMECH.2010.2096230
21 Wang XJ , Wang SP , Zhao P . Adaptive fuzzy torque control of passive torque servo systems based on small gain theorem and input-to-state stability. Chin. J. Aeronaut. 2012, 25 (6) : 906 -916 doi: 10.1016/S1000-9361(11)60461-5
doi: 10.1016/S1000-9361(11)60461-5
22 Wei JH , Guo K , Fang JH . Nonlinear supply pressure control for a variable displacement axial piston pump. Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng. 2015, 229 (7): 614-624 doi: 10.1177/0959651815577546
doi: 10.1177/0959651815577546
23 Wei L , Fang F , Shi Y . Adaptive backstepping-based composite nonlinear feedback water level control for the nuclear U-tube steam generator. IEEE Trans. Contr. Syst. Technol. 2014, 22 (1) : 369 -377 doi: 10.1109/TCST.2013.2250504
doi: 10.1109/TCST.2013.2250504
24 Wu HW , Lee CB . Self-tuning adaptive speed control of a pump/inverter-controlled hydraulic motor system. Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng. 1995, 209 (29) : 101 -114 doi: 10.1243/PIME-PROC-1995-209-37
doi: 10.1243/PIME-PROC-1995-209-37
[1] Bo Jin, Ya-guang Zhu, Wei Li, De-sheng Zhang, Lu-lu Zhang, Fei-fei Chen. 比例方向阀差动控制算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 892-902.