Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (4): 265-274    DOI: 10.1631/jzus.C1300243
    
基于反应扩散过程的复杂网络双尺度传播动力学建模
Xiao-gang Jin, Yong Min
AI Institute in College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310024, China
Modeling dual-scale epidemic dynamics on complex networks with reaction diffusion processes
Xiao-gang Jin, Yong Min
AI Institute in College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310024, China
 全文: PDF 
摘要: 研究目的:全球范围内的食物源传染病呈现出许多新的特征,包括病原体载体多样性、人与传播载体之间的复杂交互以及动力学行为的多尺度特性等。如何发展新的模型和方法来应对这些新的特征是一项关乎国计民生的重要课题。本文使用反应扩散过程,结合平均场分析,从计算机模拟和数学分析两个层面对新的传播动力学进行了建模和研究。
创新要点:经典的SIR和SIS传播模型都忽略了实际传播过程中的多尺度动力学过程,仅仅关注单一扩散行为。本文模型为多尺度复杂传播动力学的建模提供一种可行的思路。
方法提亮:利用反应扩散过程(reaction-diffusion processes),本文提出的模型简洁而又清晰地描述了复杂网络上不同尺度的传播行为,包括节点内部的增殖过程以及网络尺度的扩散过程。同时,利用平均场分析方法(mean-field analysis),为相关模型找到了数学求解的途径,从而为探索多尺度传播过程中的突现等非线性行为找到一种方法。
重要结论:(1)在多尺度动力学条件下,网络的非均匀度数分布的作用被削弱了,而节点内部的增殖机制扮演着更为重要的作用;(2)穿透效应降低了网络社团对于传播的阻碍;(3)基于双尺度的评价机制可以更准确地反映节点在传播中的重要程度。计算机模拟和数学分析均支持以上结论。
关键词: 国际贸易网络食物源传染病无标度网络平均场分析    
Abstract: The frequent outbreak of severe foodborne diseases (e.g., haemolytic uraemic syndrome and Listeriosis) in 2011 warns of a potential threat that world trade could spread fatal pathogens (e.g., enterohemorrhagic Escherichia coli). The epidemic potential from trade involves both intra-proliferation and inter-diffusion. Here, we present a worldwide vegetable trade network and a stochastic computational model to simulate global trade-mediated epidemics by considering the weighted nodes and edges of the network and the dual-scale dynamics of epidemics. We address two basic issues of network structural impact in global epidemic patterns: (1) in contrast to the prediction of heterogeneous network models, the broad variability of node degree and edge weights of the vegetable trade network do not determine the threshold of global epidemics; (2) a ‘penetration effect’, by which community structures do not restrict propagation at the global scale, quickly facilitates bridging the edges between communities, and leads to synchronized diffusion throughout the entire network. We have also defined an appropriate metric that combines dual-scale behavior and enables quantification of the critical role of bridging edges in disease diffusion from widespread trading. The unusual structure mechanisms of the trade network model may be useful in producing strategies for adaptive immunity and reducing international trade frictions.
Key words: Worldwide trade networks    Foodborne diseases    Scale-free networks    Mean-field analysis
收稿日期: 2013-08-31 出版日期: 2014-04-10
CLC:  TP39  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Xiao-gang Jin
Yong Min

引用本文:

Xiao-gang Jin, Yong Min. Modeling dual-scale epidemic dynamics on complex networks with reaction diffusion processes. Front. Inform. Technol. Electron. Eng., 2014, 15(4): 265-274.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1300243        http://www.zjujournals.com/xueshu/fitee/CN/Y2014/V15/I4/265

[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[3] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[4] Mei-juan Jia, Hui-qiang Wang, Jun-yu Lin, Guang-sheng Feng, Hai-tao Yu. DGTM:基于动态分组的移动P2P网络信任模型[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 559-569.
[5] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[6] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[7] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[8] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[9] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[11] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[12] Shuo Wang, Jiao Zhang, Tao Huang, Jiang Liu, Yun-jie Liu, F. Richard Yu. 流追踪:一种软件定义网络中低开销的时延测量和路径追踪方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 206-219.
[13] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. 基于ARIMA和Kalman滤波的道路交通状态实时预测[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 287-302.
[14] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[15] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.