Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (12): 1123-1137    DOI: 10.1631/jzus.C1400037
    
使用理性行为人优化城区交通控制
Salvador Ibarra-Martínez, José A. Castán-Rocha, Julio Laria-Menchaca
Engineering School, Autonomous University of Tamaulipas, Victoria 87000, Mexico
Optimizing urban traffic control using a rational agent
Salvador Ibarra-Martínez, José A. Castán-Rocha, Julio Laria-Menchaca
Engineering School, Autonomous University of Tamaulipas, Victoria 87000, Mexico
 全文: PDF 
摘要: 本文开发并评估了一套通过\"理性行为人\"实现先进交通信号灯的技术。这种交通信号灯可以优化具有多个交通信号灯路口的交通状况,从而提升自治性且不失可靠性、准确性和效率。特别的,面对交通信号,各个理性行为者可以分析对道路的需求以及限制,从而获知其需求水平。基于此信息,理性行为者通过实例推理(case-base dreasoning, CBR)调控其指示灯,以实现更大的交通流动性以及机动车在红灯停止状态下最少的环境污染物排放。本文采纳了一种微观仿真方法(microscopic simulator)用于所提方法与传统交通控制方法的比较。通过两个研究案例,本文方法在提升机动车流动性和减小对环境的损坏两方面体现了其有效性。例如,第一个案例中,考虑交通流量,本文方法可提升23%的流动性,降低35%的污染排放。以此先进交通灯控制道路,可提供更高服务水平和可观环境效益。
关键词: 理性行为者交通灯控制优化交通流动性    
Abstract: This paper is devoted to developing and evaluating a set of technologies with the objective of designing a methodology for the implementation of sophisticated traffic lights by means of rational agents. These devices would be capable of optimizing the behavior of a junction with multiple traffic signals, reaching a higher level of autonomy without losing reliability, accuracy, or efficiency in the offered services. In particular, each rational agent in a traffic signal will be able to analyze the requirements and constraints of the road, in order to know its level of demand. With such information, the rational agent will adapt its light cycles with the view of accomplishing more fluid traffic patterns and minimizing the pollutant environmental emissions produced by vehicles while they are stopped at a red light, through using a case-based reasoning (CBR) adaptation. This paper also integrates a microscopic simulator developed to run a set of tests in order to compare the presented methodology with traditional traffic control methods. Two study cases are shown to demonstrate the efficiency of the introduced approach, increasing vehicular mobility and reducing harmful activity for the environment. For instance, in the first scenario, taking into account the studied traffic volumes, our approach increases mobility by 23% and reduces emissions by 35%. When the roads are managed by sophisticated traffic lights, a better level of service and considerable environmental benefits are achieved, demonstrating the utility of the presented approach.
Key words: Rational agents    Traffic light control    Optimization    Traffic mobility
收稿日期: 2014-02-07 出版日期: 2014-12-05
CLC:  TP273  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Salvador Ibarra-Martínez
José A. Castán-Rocha
Julio Laria-Menchaca

引用本文:

Salvador Ibarra-Martínez, José A. Castán-Rocha, Julio Laria-Menchaca. Optimizing urban traffic control using a rational agent. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1123-1137.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1400037        http://www.zjujournals.com/xueshu/fitee/CN/Y2014/V15/I12/1123

[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[2] Hamid Reza Boveiri. 基于渐进式蚁群优化的多处理器任务分配[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 498-510.
[3] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[4] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[5] He Hao, Wei-zhong Fei, Dong-min Miao, Meng-jia Jin, Jian-xin Shen. 有定子径向通风孔的大型永磁同步发电机的转矩特性[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 814-824.
[6] Tian-qi Wu, Min Yao, Jian-hua Yang. 海豚群算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 717-729.
[7] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. 基于候选曲线的公路轨迹规划中的智能计算量分配[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[8] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. 模糊操作时间约束下的多模过程优化:声明式建模方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[9] Rui Zhao, Gui-he Qin, Jia-qiao Liu. 一种解决FlexRay总线静态段信号调度问题的矩形装箱优化方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 375-388.
[10] Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. 一种基于参数扰动的芯片成品率双目标优化框架[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 160-172.
[11] Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao. 一种基于新的势能曲面变平的卫星舱布局问题的启发式方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1031-1043.
[12] Zi-wu Ren, Zhen-hua Wang, Li-ning Sun. 基于混合生物地理学优化的8自由度冗余臂逆运动学求解[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 607-616.
[13] Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. 一种新型三维不规则排样构造算法HAPE3D[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.
[14] Ahmet Sayar, Süleyman Eken, Okan ?ztürk. 不确定空间二维范围查询的Kd-树和四叉树分解[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 98-108.
[15] Zhi-xiang Chen, Zhao-lin Li, Shan Cao, Fang Wang, Jie Zhou. 同构多核处理器中考虑制造差异的调度优化[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 1018-1033.