Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (12): 881-890    DOI: 10.1631/jzus.C1200156
    
Adaptive online prediction method based on LS-SVR and its application in an electronic system
Yang-ming Guo, Cong-bao Ran, Xiao-lei Li, Jie-zhong Ma
School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Adaptive online prediction method based on LS-SVR and its application in an electronic system
Yang-ming Guo, Cong-bao Ran, Xiao-lei Li, Jie-zhong Ma
School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
 全文: PDF 
摘要: Health trend prediction has become an effective way to ensure the safe operation of highly reliable systems, and online prediction is always necessary in many real applications. To simultaneously obtain better or acceptable online prediction accuracy and shorter computing time, we propose a new adaptive online method based on least squares support vector regression (LS-SVR). This method adopts two approaches. One approach is that we delete certain support vectors by judging the linear correlation among the samples to increase the sparseness of the prediction model. This approach can control the loss of useful information in sample data, improve the generalization capability of the prediction model, and reduce the prediction time. The other approach is that we reduce the number of traditional LS-SVR parameters and establish a modified simple prediction model. This approach can reduce the calculation time in the process of adaptive online training. Simulation and a certain electric system application indicate preliminarily that the proposed method is an effective prediction approach for its good prediction accuracy and low computing time.
关键词: Adaptive online predictionLeast squares support vector regression (LS-SVR)Electronic system    
Abstract: Health trend prediction has become an effective way to ensure the safe operation of highly reliable systems, and online prediction is always necessary in many real applications. To simultaneously obtain better or acceptable online prediction accuracy and shorter computing time, we propose a new adaptive online method based on least squares support vector regression (LS-SVR). This method adopts two approaches. One approach is that we delete certain support vectors by judging the linear correlation among the samples to increase the sparseness of the prediction model. This approach can control the loss of useful information in sample data, improve the generalization capability of the prediction model, and reduce the prediction time. The other approach is that we reduce the number of traditional LS-SVR parameters and establish a modified simple prediction model. This approach can reduce the calculation time in the process of adaptive online training. Simulation and a certain electric system application indicate preliminarily that the proposed method is an effective prediction approach for its good prediction accuracy and low computing time.
Key words: Adaptive online prediction    Least squares support vector regression (LS-SVR)    Electronic system
收稿日期: 2012-05-24 出版日期: 2012-12-09
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yang-ming Guo
Cong-bao Ran
Xiao-lei Li
Jie-zhong Ma

引用本文:

Yang-ming Guo, Cong-bao Ran, Xiao-lei Li, Jie-zhong Ma. Adaptive online prediction method based on LS-SVR and its application in an electronic system. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 881-890.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1200156        http://www.zjujournals.com/xueshu/fitee/CN/Y2012/V13/I12/881

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[3] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[6] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[8] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[9] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[10] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[11] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[12] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[13] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[14] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.