Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (7): 510-519    DOI: 10.1631/jzus.C1100342
    
Preserving global features of fluid animation from a single image using video examples
Yan Gui, Li-zhuang Ma, Chao Yin, Zhi-hua Chen
School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Preserving global features of fluid animation from a single image using video examples
Yan Gui, Li-zhuang Ma, Chao Yin, Zhi-hua Chen
School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF 
摘要: We synthesize animations from a single image by transferring fluid motion of a video example globally. Given a target image of a fluid scene, an alpha matte is required to extract the fluid region. Our method needs to adjust a user-specified video example for producing the fluid motion suitable for the extracted fluid region. Employing the fluid video database, the flow field of the target image is obtained by warping the optical flow of a video frame that has a visually similar scene to the target image according to their scene correspondences, which assigns fluid orientation and speed automatically. Results show that our method is successful in preserving large fluid features in the synthesized animations. In comparison to existing approaches, it is both possible and useful to utilize our method to create flow animations with higher quality.
关键词: Single imageVideo exampleFluid featureFluid motionFlow animation    
Abstract: We synthesize animations from a single image by transferring fluid motion of a video example globally. Given a target image of a fluid scene, an alpha matte is required to extract the fluid region. Our method needs to adjust a user-specified video example for producing the fluid motion suitable for the extracted fluid region. Employing the fluid video database, the flow field of the target image is obtained by warping the optical flow of a video frame that has a visually similar scene to the target image according to their scene correspondences, which assigns fluid orientation and speed automatically. Results show that our method is successful in preserving large fluid features in the synthesized animations. In comparison to existing approaches, it is both possible and useful to utilize our method to create flow animations with higher quality.
Key words: Single image    Video example    Fluid feature    Fluid motion    Flow animation
收稿日期: 2011-11-18 出版日期: 2012-07-06
CLC:  TP391.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yan Gui
Li-zhuang Ma
Chao Yin
Zhi-hua Chen

引用本文:

Yan Gui, Li-zhuang Ma, Chao Yin, Zhi-hua Chen. Preserving global features of fluid animation from a single image using video examples. Front. Inform. Technol. Electron. Eng., 2012, 13(7): 510-519.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1100342        http://www.zjujournals.com/xueshu/fitee/CN/Y2012/V13/I7/510

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[3] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[4] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. 基于边界分析的森林冠层半球图像中心点定位与分割[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. 基于稠密多变量标签的“连续”头部姿态估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. 基于多维尺度拉普拉斯分析方法的全球流感疫情监测[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. 基于多尺度轮廓插值生成准密集时变点云模型序列[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. 局部不相关的局部判别嵌入人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. 超越隐主题包模型:针对场景类别识别的空间金字塔匹配[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. 带有几何形变的变形图像配准[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. 基于无监督特征学习的语音情感识别方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[15] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.