Please wait a minute...
浙江大学学报(农业与生命科学版)
动物科学与动物医学     
鸭RIG-1启动子克隆、序列分析及在鸭胚胎期发育性表达
罗俊, 刘贺贺, 刘俊莹, 张涛, 王郁石, 韩春春
四川农业大学动物遗传育种研究所,四川 温江611130
Molecular cloning, bioinformatics of the duck RIG-1 promoter region, and its differential expression profiles in embryo stages
LUO Jun, LIU Hehe*, LIU Junying, ZHANG Tao, WANG Yushi, HAN Chunchun
(Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China)
 全文: PDF(4982 KB)   HTML (
摘要: RIG-1属于细胞内蛋白,与细胞增殖、分化和天然抗免疫功能密切相关。为研究RIG-1在鸭胚胎期免疫器官发育中的作用,本研究克隆得到鸭RIG-1启动子并做生物信息学分析,应用实时荧光定量PCR技术检测RIG-1基因以及预测得到的多个转录因子在鸭胚胎免疫器官发育过程中的表达模式。结果表明,扩增得到鸭RIG-1基因启动子4 372 bp。序列分析表明,该基因启动子存在典型的TATA-box、CAAT-box调控元件,有IRF-1、RXR、RAR、AP1、NF-κB、SP1、IL6及Pax-2等多个转录因子结合位点。此外,RIG-1启动子预测发现了一个CpG岛,GC含量65.8%。定量结果发现,RIG-1在鸭胚胎免疫器官中表达呈动态性,具有不同的表达模式;并在法氏囊中的表达量高于脾脏和胸腺。聚类热图显示,只有在法氏囊中RIG-1与IRF-1、RXR、AP1、NF-κB、IL6的mRNA表达量具有相似的表达模式,这可能是由于在鸭胚胎期法氏囊具有较为完整的结构与功能,暗示它们可能为RIG-1的转录因子;而在法氏囊、脾脏和胸腺中,RIG-1与IRF-1、NF-κB基因都有较为相似的表达模式,在3个组织当中均被聚类在一起,说明IRF-1和NF-κB可能参与调控RIG-1的表达。研究结果为探索鸭RIG-1基因转录调控、表达,与在细胞增殖、分化、天然抗病毒免疫方面的功能提供了依据和方向。
关键词: RIG-1启动子免疫    
Abstract: The retinoic acid inducible gene-1-like receptors (RLRs) play an important role in innate immune system. RIG-1, as a member of RLRs, belongs to intracellular protein and is closely related to cell proliferation, differentiation and innate antiviral immunity. It is widely accepted that the RIG-1 is absent in chicken genome, whereas exists in the duck's, which may account for the stronger abilities of waterfowl than chicken in antivirus. Promoter, as the central element of gene expression regulation, can affect gene function by regulating mRNA transcription. However, there is still no report focusing on avian RIG-1 promoter. The purpose of this study was to investigate the characteristics of duck RIG-1 promoter region and its differential expression profiles in embryo stages.
  5′ flanking promoter sequence of duck RIG-1 was obtained by PCR amplification and was analyzed by bioinformatics. The expression profiles of RIG-1 were detected by qRT-PCR in immune organs during duck embryonic development, as well as the predicted transcription factors regulating RIG-1 transcription.
  4 372 bp of duck RIG-1 promoter region was finally obtained. Bioinformatics analysis showed that typical elements, including TATA-box, CAAT-box, and binding sites of transcription factors, such as IRF-1, RXR, RAR, AP1, NF-κB, SP1, IL6 and Pax-2, were distributed in duck RIG-1 promoter region. Studies had demonstrated that IRF-1 can promote the expression of human RIG-1 and Pax-2 can inhibit the expression of mouse RIG-1. Besides, a CpG island with 65.8% GC content was predicted in duck RIG-1 promoter region, which has been found in mouse too. These data indicated that a similar transcription regulation manner may exist in duck with human and mouse. The results of qRT-PCR demonstrated that RIG-1 expression levels were dynamic in immune organs during duck embryo stages, and the expression of RIG-1 in bursa of Fabricius is higher than in spleen and thymus. Clustering of gene expression pattern showed that RIG-1 had similar expression patterns with IRF-1, RXR, AP1, NF-κB and IL6 in bursa of Fabricius, which may be due to that the bursa of Fabricius, compared with thymus and spleen, had relatively complete structure and function in duck embryo stages. This result indicated that they might regulate the transcription of RIG-1. Moreover, RIG-1 always had similar expression pattern with IRF-1 and NF-κB in bursa of Fabricius, spleen and thymus, which suggested that IRF-1 and NF-κB could regulate the expression of RIG-1.
  It was the first report about the promoter sequence of duck RIG-1. The findings in characteristics of duck RIG-1 promoter region, and the relationships between RIG-1 and its transcription factors reflected by mRNA expression profiles in immune organs of embryonic stages may provide a basis and direction to explore transcriptional regulation and expression of duck RIG-1.
Key words: RIG-1    promoter    duck    immune 
出版日期: 2017-01-25
CLC:  S 834     
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
罗俊
刘贺贺
刘俊莹
张涛
王郁石
韩春春

引用本文:

罗俊, 刘贺贺, 刘俊莹, 张涛, 王郁石, 韩春春. 鸭RIG-1启动子克隆、序列分析及在鸭胚胎期发育性表达[J]. 浙江大学学报(农业与生命科学版), 10.3785/j.issn.1008-9209.2016.06.031.

LUO Jun, LIU Hehe, LIU Junying, ZHANG Tao, WANG Yushi, HAN Chunchun . Molecular cloning, bioinformatics of the duck RIG-1 promoter region, and its differential expression profiles in embryo stages. Journal of Zhejiang University (Agriculture and Life Sciences), 10.3785/j.issn.1008-9209.2016.06.031.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2016.06.031        http://www.zjujournals.com/agr/CN/Y2017/V43/I1/104

[1] 徐超, 杨晓炼, 乐敏, 朱书. 细菌促进肠道病毒感染及其机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 140-148.
[2] 覃盼,王经纬,王斌,雷喜梅,李龙,黄耀伟. 中国东部5省猪呼肠孤病毒流行病学调查与分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 631-638.
[3] 李丽, 缪中纬, 辛清武, 朱志明, 章琳俐, 李忠荣, 郑嫩珠. 酵母硒和黄芪多糖对半番鸭屠宰性能、血清生化及抗氧化指标的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 502-510.
[4] 康永波, 孔祥阳, 张晓芳, 郭丽琼, 苏君鸿. 肠道微生物与免疫的研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 282-288.
[5] 向玉勇,张云,殷培峰,朱萍. 大肠埃希菌感染后金银花尺蠖幼虫血细胞的变化[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 163-168.
[6] 崔雨婷, 张睿, 陈正礼, 罗启慧, 祝春梅, 孙凤娇, 陈梦鹿. 大鼠自发性乳腺肿瘤中Bax、Bcl-2和Caspase-3的表达[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 119-126.
[7] 余恩, 蔡芸菲, 赵茹冰, 陈进红, 祝水金. 2个转基因抗虫杂交棉Bt蛋白含量的时空表达特性研究[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 17-22.
[8] 卫文强,季少平,张银燕. Sf9细胞存在Dm0-like核纤层蛋白的证据[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 245-251.
[9] 李丽, 徐琪, 陈阳, 黄学涛, 李柳萌, 陶仲连, 陈国宏. 绍兴鸭生长激素基因多态性与生长性能关联性分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 365-370.
[10] 关小燕, 陈丽妃, 何艳军, 王洁, 卢钢*. 番茄SlMAPK7基因的亚细胞定位与组织表达特性[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 598-604.
[11] 华雪铭, 王世忠, 陈瑶琴, 钟国防*, 周洪琪. 植酸酶对斑点叉尾鮰脊椎形态和非特异性免疫相关酶活力的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 94-102.
[12] 陆宗超, 李振兴*, 张立敏, 林洪. 大菱鲆过敏原氧化后理化性质及与IgE结合能力的变化[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 679-686.
[13] 田洁, 梁晓, 桂文君, 朱国念*. 糙米、土壤和田水中三唑磷残留的化学发光酶免疫分析方法[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 513-521.
[14] 黄玉吉1,2, 陈斌1*, 张传溪2*. 褐飞虱体内Himetobi P病毒的检测及组织定位[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 473-590.
[15] 肖海龙*, 赵凯, 林赛君, 王红青, 潘建红. 牛奶β-酪蛋白和大豆β-伴球蛋白双抗制备及夹心ELISA快速定性检测技术的建立[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 222-226.