Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (3): 303-309    DOI:
    
Solutions to six classes of the Oberwolfach problem OP$(4^{a},s^b)$
LI Xiao-fang1, CAO Hai-tao?2
1. Department of Common Course, Anhui Xinhua University, Hefei 230088, China
2. Institute of Mathematics, Nanjing Normal University, Nanjing 210023, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The problem of determining whether $K_n$ (for $n$ odd) or $K_n$ minus a 1-factor (for $n$ even) has a 2-factorization is called Oberwolfach problem. The notation OP$(m_1^{\alpha_1},m_2^{\alpha_2},\cdots,m_t^{\alpha_t})$ represents the case in which each 2-factor consists of exactly $\alpha_i$ cycles of length $m_i$ for $i=1,2,\cdots,t$. Proved that the OP$(4^{a},s^b)$ with $a\geq 0$, $b=2,3$, $s=3,5,6$ and $(a,s,b)\not=(0,3,2)$ have solutions.

Key wordsOberwolfach problem      cycle group divisible design      cycle frame     
Received: 16 January 2014      Published: 10 June 2018
CLC:  O157  
Cite this article:

LI Xiao-fang, CAO Hai-tao. Solutions to six classes of the Oberwolfach problem OP$(4^{a},s^b)$. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 303-309.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I3/303


六类Oberwolfach问题OP$(4^{a},s^b)$的解

完全图$K_n$($n$为奇数)或$K_n-I$($n$为偶数, $I$为$K_n$的1-因子)是否有2-因子分解称为Oberwolfach问题. 每个2-因子恰包含$\alpha_i$个长为$m_i$的圈($i=1,2,\cdots,t$)的Oberwolfach问题记为OP$(m_1^{\alpha_1},m_2^{\alpha_2},\cdots,m_t^{\alpha_t})$. 证明了对任意的$a\ge 0$, $b=2,3$和$s=3,5,6$, 且$(a,s,b)\not=(0,3,2)$, 都存在OP$(4^{a},s^b)$的解.

关键词: Oberwolfach问题,  圈可分组设计,  圈支架 
[1] LI Rui-juan, HAN Ting-ting. Arc-disjoint Hamiltonian cycles and paths in positive-round digraphs#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 487-492.
[2] HOU Yuan, CHEN Yu-li, ZHENG Yi-rong. Hyper-Wiener index of Eulerian graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 248-252.
[3] WU Bao-feng, PANG Lin-lin, SHEN Fu-qiang. On the least signless Laplacian eigenvalue of graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 83-89.
[4] WANG Zhan-qing, WANG Li-gong, MEI Ruo-xing, ZHAI Ruo-nan, DONG Zhan-peng. Two kinds of bicyclic graphs are determined by their Laplacian spectra[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 73-82.
[5] LIU Xiao-rong, GUO Shu-guang, ZHANG Rong. On the least  signless Laplacian eigenvalue of a $P_t$-free non-bipartite connected graph[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 462-468.
[6] SHAO Xu-yan, ZHANG Yong, WANG Cheng-min. Existence of a family of strongly symmetric self-orthogonal diagonal Sudoku squares [J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 469-475.
[7] HE Chang-xiang, LIU Shi-qiong. The star matching number and (signless) Laplacian eigenvalues[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 333-339.
[8] HE Chun-yang, GUO Shu-guang. On the signless Laplacian and Laplacian spectral radius of triangle-free $k$-cyclic graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 295-302.
[9] GUO Qiao-ping, CUI Li-nan. Outpaths of all length of an arc in regular multipartite tournaments[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 288-294.