Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (3): 295-302    DOI:
    
On the signless Laplacian and Laplacian spectral radius of triangle-free $k$-cyclic graphs
HE Chun-yang1,2, GUO Shu-guang2
1. Department of Mathematics, Qinghai Normal University, Xining 810008, China
2. School of Mathematical Sciences, Yancheng Teachers University, Yancheng 224002, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A $k$-cyclic graph is a connected graph in which the number of edges equals the number of vertices plus $k+1$. This paper determines the maximal signless Laplacian spectral radius together with the corresponding extremal graph among all triangle-free $k$-cyclic graphs of order $n$. Moreover, this paper gives the first five triangle-free unicyclic graphs on $n \,(n\geq 8)$ vertices, and the first eight triangle-free bicyclic graphs on $n \,(n\geq 12)$ vertices according to the signless Laplacian spectral radius. Finally, the authors of this paper show that the results obtained in this paper also hold for Laplacian spectral radius of triangle-free $k$-cyclic graphs of order $n$.

Key words$k$-cyclic graph      triangle-free      signless Laplacian spectral radius      Laplacian spectral radius      unicyclic graph      bicyclic graph     
Received: 08 April 2014      Published: 10 June 2018
CLC:  O157  
Cite this article:

HE Chun-yang, GUO Shu-guang. On the signless Laplacian and Laplacian spectral radius of triangle-free $k$-cyclic graphs. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 295-302.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I3/295


不含三圈的$k$圈图的拟拉普拉斯和拉普拉斯谱半径

$k$圈图是边数等于顶点数加$k-1$的简单连通图. 文中确定了不含三圈的$k$圈图的拟拉普拉斯谱半径的上界,并刻画了达到该上界的极图. 此外, 文中确定了拟拉普拉斯谱半径排在前五位的不含三圈的单圈图, 排在前八位的不含三圈的双圈图. 最后说明文中所得结论对不含三圈的$k$圈图的拉普拉斯谱半径也成立.

关键词: $k$圈图,  不含三圈,  拟拉普拉斯谱半径,  拉普拉斯谱半径,  单圈图,  双圈图 
[1] LIU Xiao-rong, GUO Shu-guang, ZHANG Rong. On the least  signless Laplacian eigenvalue of a $P_t$-free non-bipartite connected graph[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 462-468.