Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (1): 109-116    DOI:
    
Positive solution for boundary value problem of a class of fractional differential system
LI Yao-hong
Laboratory of Intelligent Information Processing, Suzhou University, Suzhou 234000, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  By using fixed point theory of cone expansion and compression of norm type, a class of boundary value problem of fractional differential system with Riemann-Liouville fractional integral conditions is investigated. Combining with the relevant properties of Green function, some sufficient conditions on the existence of positive solutions are established. Some examples are given to illustrate the application of the result.

Key wordsintegral boundary value problem      fractional differential equation      Caputo fractional derivative      fixed point theory     
Received: 22 April 2014      Published: 06 June 2018
CLC:  O175.8  
Cite this article:

LI Yao-hong. Positive solution for boundary value problem of a class of fractional differential system. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 109-116.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I1/109


一类分数阶微分方程组积分边值问题的正解

利用锥拉伸和压缩不动点定理, 研究了一类具有Riemann-Liouvile分数阶积分条件的分数阶微分方程组边值问题. 结合该问题相应Green函数的性质, 获得了其正解的存在性条件, 并给出了一些应用实例.

关键词: 积分边值问题,  分数阶微分方程,  Caputo型分数阶导数,  不动点定理 
[1] KONG Xiang-shan, LI Hai-tao, ZHAO Hong-xin, LV Xun-jing. Bifurcation of positive solutions for a class of integral boundary value problems of fractional differential equations[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 13-22.
[2] LU Liang, GUO Xiu-feng. Existence of solutions for a nonlocal boundary value problem of fractional differential equations with $p$-Laplacian operator[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 262-270.
[3] SUN Yu-dong, WANG Xiu-fen. The nonlinear variational inequality problem arising from American barrier option[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 43-54.