Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (1): 101-108    DOI:
    
The minimality of contact-Riemannian immersion
WU Fei-fan
Dept. of Math., Zhejiang Univ., Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Contact-Riemannian manifolds, without necessarily integrable complex structures, are the generalization of pseudohermitian manifolds in CR geometry. The Tanaka-Webster-Tanno connection plays the role of Tanaka-Webster connection in the pseudohermitian case. Pseudo-hermitian immersions of CR geometry can be developed to contact-Rimannian immersions of contact Riemannian manifold, and it can be proved that any contact-Riemannian immersion is minimal.

Key wordscontact-Riemannian manifold      TWT connection      contact Riemannian immersion      minimal immersion     
Received: 05 November 2014      Published: 06 June 2018
CLC:  O184  
Cite this article:

WU Fei-fan. The minimality of contact-Riemannian immersion. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 101-108.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I1/101


切触黎曼浸入的极小性

切触黎曼流形, 其殆复结构不一定是可积的, 是CR几何中伪厄尔米特流形的一般情形. 选取TWT联络作为切触黎曼流形上的联络, 在CR情形下它就是TW联络. 推广CR几何中的伪厄尔米特浸入得到切触黎曼几何中的切触黎曼浸入, 可以证明任何切触黎曼浸入一定是极小的.

关键词: 切触黎曼流形,  TWT联络,  切触黎曼浸入,  极小浸入 
[1] SHI Yun. Chain and $\mathbf{R}$-circle on quaternionic Heisenberg group and their properties[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 90-100.