Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (1): 117-126    DOI:
    
A nonlinear mixed boundary value problem for singularly perturbed differential equation
CHEN Wen, YAO Jing-sun, SUN Guo-zheng
College of Mathematics and computer science, Anhui Normal University, Wuhu 241003, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, a singularly perturbed nonlinear mixed boundary value problem for third-order semilinear differential equation is studied. The formal asymptotic solution to this problem is constructed by the method of boundary layer functions. According to the theory of differential inequalities, the existence of solution is proved and the error estimate of asymptotic solution is given. Finally, the exponential decay of boundary layer functions for this problem is concluded.

Key wordssingular perturbation      third-order differential equation      boundary layer function method      exponential decay      the theory of differential inequality     
Received: 07 October 2014      Published: 06 June 2018
CLC:  O175.14  
Cite this article:

CHEN Wen, YAO Jing-sun, SUN Guo-zheng. A nonlinear mixed boundary value problem for singularly perturbed differential equation. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 117-126.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I1/117


一个奇摄动微分方程非线性混合边值问题

研究了一个三阶半线性微分方程的奇摄动非线性混合边值问题. 利用边界层函数法构造了该问题的形式渐近解, 并采用微分不等式理论证明了解的存在性, 给出了渐近解的误差估计, 最后得出了边界层函数指数型衰减的结论.

关键词: 奇摄动,  三阶微分方程,  边界层函数法,  指数型衰减,  微分不等式理论 
[1] BAO Li-ping. A class of boundary value problem of singular perturbed semi-linear differential systems with discontinuous source term[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 413-422.
[2] BAO Li-ping. The asymptotic solution of a class of singular perturbed semi-linear delayed parabolic partial differential equation[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 307-315.
[3] . Stability of the weakly coupled beam-string system with boundary feedback control[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 185-193.
[4] LI Hui-fang, BAO Li-ping. Solution to multiscale Asian option pricing model with the singular perturbation method[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 389-398.