Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (6): 660-666    DOI: 10.3785/j.issn.1008-9209.2020.05.181
Reviews     
Protective effect and mechanisms of marine antifreeze protein product on sperm cryodamage in livestock
Nuo HENG1(),Yong GUO1,Yu CHEN2,Liang WANG2,Xihui SHENG1,Xiangguo WANG1,Kai XING1,Hemin NI1,Xiaolong QI1()
1.College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
2.Beijing General Station of Animal Husbandry, Beijing 100107, China
Download: HTML   HTML (   PDF(1245KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Antifreeze proteins (AFPs), a class of antifreeze substances, were initially found to bind to ice crystals in vivo, thereby contributing to inhibition of the growth of ice crystals that enabled polar fish to survive at the temperatures below freezing point. As a potential cryoprotectant, AFPs had been used for cryopreservation of germ cells, embryos and other biological samples. In this review, the application of AFPs to the cryopreservation of livestock tissues and cells in recent 10 years was summarized. The characteristics and principles of frost protection of AFPs under different biological models were discussed, and the possible influencing factors of AFPs in the cryopreservation of biological samples were analyzed. The protective effects of AFPs on sperm cryopreservation and its action mechanism were summarized, and the theoretical references were provided for the application of AFPs in cryopreservation of animal sperm. The non-toxicity and peculiar biological characteristics of AFPs in cryopreservation provided a new solution for livestock semen cryopreservation. Therefore, AFPs have a broad prospect in cryopreservation of sperm.



Key wordsantifreeze protein      ice recrystallization inhibition      thermal hysteresis effect      antifreeze protectant     
Received: 18 May 2020      Published: 31 December 2020
CLC:  S 8  
Corresponding Authors: Xiaolong QI     E-mail: 1017337574@qq.com;buaqxl@126.com
Cite this article:

Nuo HENG,Yong GUO,Yu CHEN,Liang WANG,Xihui SHENG,Xiangguo WANG,Kai XING,Hemin NI,Xiaolong QI. Protective effect and mechanisms of marine antifreeze protein product on sperm cryodamage in livestock. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 660-666.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.05.181     OR     http://www.zjujournals.com/agr/Y2020/V46/I6/660


海源性抗冻蛋白对畜禽精子冷冻损伤的保护作用及其机制

抗冻蛋白(antifreeze proteins, AFPs)是一类抗冻物质。最初发现抗冻蛋白能够与体内冰晶结合,通过抑制冰晶生长使极地鱼类能够在低于冰点的温度条件下生存。作为一种潜在的冷冻保护剂,AFPs已被用于低温保存生殖细胞和胚胎等生物样品。本文总结了近10年间AFPs在家畜组织和细胞冷冻保存技术方面的应用研究进展,探讨了AFPs在不同生物模型中抗冻保护作用的特性和原理,分析了AFPs在冷冻保存生物样本中可能产生影响的因素。同时,概述了AFPs对精子冷冻损伤的保护作用及其机制。总之,AFPs在冷冻保存中所表现出的无毒性和特有的生物学特性为家畜精液冷冻保存提供了一种新的解决方案,研究AFPs对精子的冷冻保护具有广阔的前景。


关键词: 抗冻蛋白,  抑制冰再结晶,  热滞效应,  冷冻保护剂 

抗冻蛋白

AFPs

生物样品

Biological sample

最适质量浓度

Optimal

concentration/

(μg/mL)

AFPs作用效果

Benefit of AFPs

冷冻方法

Freezing method

文献

Reference

AFPⅠ

AFPⅢ

鲤鱼精子1提高复苏后精子活力和直线速度距液氮面3 cm处蒸熏15 min[38]
AFPⅠ鲟鱼精子10提高复苏后精子活力和前向性距液氮面3 cm处蒸熏10 min[46]
DAFPs水牛精子10提高解冻后精子活力4 ℃平衡2 h后液氮蒸熏10 min[39]
AFPⅢ猪桑葚胚1提高胚胎发育质量25 ℃保存24 h[42]

AFPⅢ

FfIBP

LeIBP

鼠卵巢组织1×104降低复苏后卵巢细胞凋 亡率置于液氮中-196 ℃保存[28]
AFGP水牛精子1提高复苏后精子前向性和质膜完整性4 ℃平衡2 h后转入液氮中保存[53]
AFPⅢ牛胚胎1×104延长胚胎活力4 ℃保存10 d[54]
AFPⅢ牛卵母细胞0.5~1提高胚胎发育率置于液氮中-196 ℃保存[40]
DcAFP水牛精液10改善精子活力,提高受精率4 ℃平衡2 h后转入液氮中保存[39]
LeIBP植物细胞100提高复苏后细胞膜完整率程序化冷冻(20 ℃/min—0 ℃/min—5 ℃/min后,再0 ℃/min—40 ℃/min—1 ℃/min),液氮中保存2周[55]
AFPⅢ小鼠卵巢2×104提高复苏后卵泡完整率置于液氮中-196 ℃保存[56]
BSPs绵羊精子750提高解冻后精子运动性和顶体完整性4 ℃平衡1.5 h,再置于干冰上冷冻2 min后移入液氮中保存[57]
AFPⅢ兔精子1提高解冻后精子活力4 ℃平衡30 min后移入液氮中保存[47]
Table 1 List of AFPs cryopreserved biological samples in recent five years
Fig. 1 Schematic diagram of AFPs adsorption inhibition
[1]   DAVIES P L. Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends in Biochemical Sciences, 2014,39(11):548-555. DOI:10.1016/j.tibs.2014.09.005
doi: 10.1016/j.tibs.2014.09.005
[2]   DEVRIES A L, WOHLSCHLAG D E. Freezing resistance in some Antarctic fishes. Science, 1969,163(3871):1073-1075.
[3]   DEVRIES A L, KOMATSU S K, FEENEY R E, et al. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. Journal of Biological Chemistry, 1970,245(11):2901-2908.
[4]   DAVIES P L, HEW C L. Biochemistry of fish antifreeze proteins. The FASEB Journal, 1990,4(8):2460-2468.
[5]   KIKO R. Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biology, 2010,33(4):543-556. DOI:10.1007/s00300-009-0732-0
doi: 10.1007/s00300-009-0732-0
[6]   JUNG W, GWAK Y, DAVIES P L, et al. Isolation and characterization of antifreeze proteins from the antarctic marine microalga Pyramimonas gelidicola. Marine Biotechnoloy, 2014,16(5):502-512. DOI:10.1007/s10126-014-9567-y
doi: 10.1007/s10126-014-9567-y
[7]   SINGH P, HANADA Y, SINGH S M, et al. Antifreeze protein activity in arctic cryoconite bacteria. FEMS Microbiology Letters, 2014,351(1):14-22. DOI:10.1111/1574-6968.12345
doi: 10.1111/1574-6968.12345
[8]   DOLEV M B, BRASLAVSKY I, DAVIES P L, et al. Ice-binding proteins and their function. Annual Review of Biochemistry, 2016,85(1):515-542. DOI:10.1146/annurev-biochem-060815-014546
doi: 10.1146/annurev-biochem-060815-014546
[9]   RAYMOND J A, DEVRIES A L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. PNAS, 1977,74(6):2589-2593.
[10]   DUMAN J G. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. Journal of Experimental Biology, 2015,218(12):1846-1855. DOI:10.1242/jeb.116905
doi: 10.1242/jeb.116905
[11]   VENKETESH S, DAYANANDA C. Properties, potentials, and prospects of antifreeze proteins. Critical Reviews Biotechnology, 2008,28(1):57-82. DOI:10.1080/07388550801891152
doi: 10.1080/07388550801891152
[12]   WEN D Y, LAURSEN R A. Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids. Journal of Biological Chemistry, 1992,267(20):14102-14108.
[13]   SCOTTER A J, MARSHALL C B, GRAHAM L A, et al. The basis for hyperactivity of antifreeze proteins. Cryobiology, 2006,53(2):229-239. DOI:10.1016/j.cryobiol.2006.06.006
doi: 10.1016/j.cryobiol.2006.06.006
[14]   CELIK Y, DRORI R, PERTAYABRAUN N, et al. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. PNAS, 2013,110(4):1309-1314. DOI:10.1073/pnas.1213603110
doi: 10.1073/pnas.1213603110
[15]   BARDOLEV M, CELIK Y, WETTLAUFER J S, et al. New insights into ice growth and melting modifications by antifreeze proteins. Journal of the Royal Society Interface, 2012,9(77):3249-3259. DOI:10.1098/rsif.2012.0388
doi: 10.1098/rsif.2012.0388
[16]   DO H, LEE J H, LEE S G, et al. Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1. Acta Crystallographica Section F-Structural Biology Communi-cations, 2012,68(11):1418. DOI:10.1107/S1744309112020465
doi: 10.1107/S1744309112020465
[17]   DRORI R, CELIK Y, DAVIES P L, et al. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics. Journal of the Royal Society Interface, 2014,11(98):20140526. DOI:10.1098/rsif.2014.0526
doi: 10.1098/rsif.2014.0526
[18]   PARK K S, DO H, LEE J H, et al. Characterization of the ice-binding protein from arctic yeast Leucosporidium sp. AY30. Cryobiology, 2012,64(3):286-296. DOI:10.1016/j.cryobiol.2012.02.014
doi: 10.1016/j.cryobiol.2012.02.014
[19]   SIDEBOTTOM C, BUCKLEY S, PUDNEY P, et al. Heat-stable antifreeze protein from grass. Nature, 2000,406(6793):256. DOI:10.1038/35018639
doi: 10.1038/35018639
[20]   KNIGHT C A, DUMAN J G. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology, 1986,23(3):256-262.
[21]   GRIFFITH M, YAISH M W F. Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science, 2004,9(8):405. DOI:10.1016/j.tplants.2004.06.007
doi: 10.1016/j.tplants.2004.06.007
[22]   RAYMOND J A, JANECH M G, FRITSEN C H. Novel ice-binding proteins from a psychrophilic antarctic alga (Chlamy-domonadaceae, Chlorophyceae). Journal of Phycology, 2009,45(1):130-136. DOI:10.1111/j.1529-8817.2008.00623.x
doi: 10.1111/j.1529-8817.2008.00623.x
[23]   BOUVET V, BEN R N. Antifreeze glycoproteins: structure, conformation, and biological applications. Cell Biochemistry and Biophysics, 2003,39(2):133-144. DOI:10.1385/CBB:39:2:133
doi: 10.1385/CBB:39:2:133
[24]   HARDING M M, ANDERBERG P I, HAYMET A D. ‘Antifreeze’ glycoproteins from polar fish. European Journal of Biochemistry, 2003,270(7):1381-1392. DOI:10.1046/j.1432-1033.2003.03488.x
doi: 10.1046/j.1432-1033.2003.03488.x
[25]   FULLER B J. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters, 2004,25(6):375-388. DOI:10.1016/j.cbpb.2004.10.012
doi: 10.1016/j.cbpb.2004.10.012
[26]   权国波,吴国权,吕春荣,等.抗冻蛋白对山羊精子冷冻保护效果的分析.中国畜牧杂志,2017,53(3):53-57. DOI:10.19556/j.0258-7033.2017-03-053
QUAN G B, WU G Q, Lü C R, et al. Analysis of the protective effects of antifreeze proteins on frozen goat sperm. Chinese Journal of Animal Science, 2017,53(3):53-57. (in Chinese with English abstract)
doi: 10.19556/j.0258-7033.2017-03-053
[27]   AMIR G, RUBINSKY B, KASSIF Y, et al. Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins: an electron microscopy study. European Association for Cardio-Thoracic Surgery, 2003,24(2):292-296, 297. DOI:10.1016/S1010-7940(03)00306-3
doi: 10.1016/S1010-7940(03)00306-3
[28]   LEE J, KIM S K, YOUM H W, et al. Effects of three different types of antifreeze proteins on mouse ovarian tissue cryopreservation and transplantation. PLoS ONE, 2015,10(5):e126252. DOI:10.1371/journal.pone.0126252
doi: 10.1371/journal.pone.0126252
[29]   TOMCZAK M M, HINCHA D K, ESTRADA S D, et al. A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophysical Journal, 2002,82(2):874-881. DOI:10.1016/S0006-3495(02)75449-0
doi: 10.1016/S0006-3495(02)75449-0
[30]   KUN H, BYK G, MASTAI Y. Effects of antifreeze protein fragments on the properties of model membranes. Advances in Experimental Medicine and Biology, 2009,611:85-86. DOI:10.1007/978-0-387-73657-0_38
doi: 10.1007/978-0-387-73657-0_38
[31]   KUN H, MASTAI Y. Isothermal calorimetry study of the interactions of type Ⅰ antifreeze proteins with a lipid model membrane. Protein Peptide Letters, 2010,17(6):739-743. DOI:10.2174/092986610791190354
doi: 10.2174/092986610791190354
[32]   RUBINSKY B, ARAV A, MATTIOLI M, et al. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochemical and Biophysical Research Communications, 1990,173(3):1369-1374. DOI:10.1016/S0006-291X(05)80939-8
doi: 10
[33]   NEGULESCU P A, RUBINSKY B, FLETCHER G L, et al. Fish antifreeze proteins block Ca entry into rabbit parietal cells. American Journal of Physiology, 1992,263(1):C1310-C1313.
[34]   RUBINSKY B, MATTIOLI M, ARAV A, et al. Inhibition of Ca2+ and K+ currents by ‘antifreeze’ proteins. American Journal of Physiology, 1992,262(3 Pt 2):R542-R545.
[35]   WANG L H, WUSTEMAN M C, SMALLWOOD M, et al. The stability during low-temperature storage of an antifreeze protein isolated from the roots of cold-acclimated carrots. Cryobiology, 2002,44(3):307-310. DOI:10.1016/S0011-2240(02)00036-6
doi: 10.1016/S0011-2240(02)00036-6
[36]   UTESCH T, DE MIGUEL C A, SCHATTENBERG C, et al. A computational modeling approach predicts interaction of the antifungal protein AFP from Aspergillus giganteus with fungal membranes via its γ-core motif. mSphere, 2018,3(5):e00377-18. DOI:10.1128/mSphere.00377-18
doi: 10.1128/mSphere.00377-18
[37]   CABRITA E, SARASQUETE C, MARTíNEZ-PáRAMO S, et al. Cryopreservation of fish sperm: applications and perspectives. Journal of Applied Ichthyology, 2010,5(26):623-635. DOI:10.1111/j.1439-0426.2010.01556.x
doi: 10.1111/j.1439-0426.2010.01556.x
[38]   SHALIUTINA-KOLESOVA A, DIETRICH M A, XIAN M, et al. Seminal plasma transferrin effects on cryopreserved common carp Cyprinus carpio sperm and comparison with bovine serum albumin and antifreeze proteins. Animal Reproduction Science, 2019,204:125-130. DOI:10.1016/j.anireprosci.2019.03.013
doi: 10.1016/j.anireprosci.2019.03.013
[39]   QADEER S, KHAN M A, SHAHZAD Q, et al. Efficiency of beetle (Dendroides canadensis) recombinant antifreeze protein for buffalo semen freezability and fertility. Therioge-nology, 2016,86(7):1662-1669. DOI:10.1016/j.theriogenology.2016.05.028
doi: 10.1016/j.theriogenology
[40]   CHAVES D F, CAMPELO I S, SILVA M M, et al. The use of antifreeze protein type Ⅲ for vitrification of in vitro matured bovine oocytes. Cryobiology, 2016,73(3):324-328. DOI:10.1016/j.cryobiol.2016.10.003
doi: 10.1016/j.cryobiol.2016.10.003
[41]   GU M C, NI H M, SHENG X H, et al. RhoA phosphorylation mediated by Rho/RhoA-associated kinase pathway improves the anti-freezing potentiality of murine hatched and diapaused blastocysts. Scientific Reports, 2017,7(1):6705. DOI:10.1038/s41598-017-07066-2
doi: 10.1038/s41598-017-07066-2
[42]   NGUYEN T V, TANIHARA F, HIRATA M, et al. Effects of antifreeze protein supplementation on the development of porcine morulae stored at hypothermic temperatures. Cryo Letters, 2018,39(2):131-136.
[43]   IBRAHIM S M, KAREEM O H, SAFFANAH K M, et al. Histological and mechanical evaluation of antifreeze peptide (Afp1m) cryopreserved skin grafts post transplantation in a rat model. Cryobiology, 2018,82:27-36. DOI:10.1016/j.cryobiol.2018.04.012
doi: 10.1016/j.cryobiol
[44]   PARKS J E. Hypothermia and mammalian gametes//Reproductive Tissue Banking. New York, US: Academic Press, 1997:229-261.
[45]   OEHNINGER S, DURU N K, SRISOMBUT C, et al. Assessment of sperm cryodamage and strategies to improve outcome. Molecular and Cellular Endocrinology, 2000,169(1/2):3-10. DOI:10.1016/S0303-7207(00)00343-9
doi: 10.1016/S0303-7207(00)00343-9
[46]   XIN M, TUCKOVA V, RODINA M, et al. Effects of antifreeze proteins on cryopreserved sterlet (Acipenser ruthenus) sperm motility variables and fertilization capacity. Animal Reproduction Science, 2018,196:143-149. DOI:10.1016/j.anireprosci.2018.07.007
doi: 10.1016/j.anireprosci.2018.07.007
[47]   NISHIJIMA K, TANAKA M, SAKAI Y, et al. Effects of type Ⅲ antifreeze protein on sperm and embryo cryopreservation in rabbit. Cryobiology, 2014,69(1):22-25. DOI:10.1016/j.cryobiol.2014.04.014
doi: 10.1016/j.cryobiol.2014.04.014
[48]   BEIRAO J, ZILLI L, VILELLA S, et al. Improving sperm cryopreservation with antifreeze proteins: effect on gilthead seabream (Sparus aurata) plasma membrane lipids. Biology Reproduction, 2012,86(2):59. DOI:10.1095/biolreprod.111.093401
doi: 10.1095/biolreprod.111.093
[49]   KIM J S, YOON J H, PARK G H. Influence of antifreeze proteins on boar sperm DNA damaging during cryopreservation. Developmental Biology, 2011,356(1):195. DOI:10.1016/j.ydbio.2011.05.260
doi: 10.1016/j.ydbio
[50]   PURDY P H, SONG Y. Evaluation of glycerol removal techniques, cryoprotectants, and insemination methods for cryopreserving rosser sperm with implications of regeneration of breed or line or both. Poultry Science, 2009,88(10):2184-2191. DOI:10.3382/ps.2008-00402
doi: 10.3382/ps.2008-00402
[51]   YAO Z, CRIM L W, RICHARDSON G F, et al. Motility, fertility and ultrastructural changes of ocean pout (Macro-zoarces americanus L.) sperm after cryopreservation. Aquaculture, 2000,181(3):361-375. DOI:10.1016/S0044-8486(99)00240-9
doi: 10.1016/S0044-8486(99)00240-9
[52]   HE S, WOODS L R. Effects of dimethyl sulfoxide and glycine on cryopreservation induced damage of plasma membranes and mitochondria to striped bass (Morone saxatilis) sperm. Cryobiology, 2004,48(3):254-262. DOI:10.1016/j.cryobiol.2004.01.009
doi: 10
[53]   QADEER S, KHAN M A, ANSARI M S, et al. Efficiency of antifreeze glycoproteins for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Animal Reproduction Science, 2015,157:56-62. DOI:10.1016/j.anireprosci.2015.03.015
doi: 10.1016/j.anireprosci.2015.03
[54]   IDETA A, AOYAGI Y, TSUCHIYA K, et al. Prolonging hypothermic storage (4 ℃) of bovine embryos with fish antifreeze protein. Journal of Reproduction and Development, 2015,61(1):1-6. DOI:10.1262/jrd.2014-073
doi: 10.1262/jrd.2014-073
[55]   KOH H Y, LEE J H, HAN S J, et al. Effect of the antifreeze protein from the arctic yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom Phaeodactylum tricornutum. Applied Biochemistry and Biotechnology, 2015,175(2):677-686. DOI:10.1007/s12010-014-1337-9
doi: 10.1007/s12010-014-1337-9
[56]   LEE J R, YOUM H W, LEE H J, et al. Effect of antifreeze protein on mouse ovarian tissue cryopreservation and transplantation. Yonsei Medical Journal, 2015,56(3):778-784. DOI:10.3349/ymj.2015.56.3.778
doi: 10.3349/ymj.2015.56.3.778
[57]   PINI T, FARMER K, DRUART X, et al. Binder of sperm proteins protect ram spermatozoa from freeze-thaw damage. Cryobiology, 2018,82:78-87. DOI:10.1016/j.cryobiol.2018.04.005
doi: 10.1016/j.cryobiol.2018.04
[58]   喻宗岗,蒋隽,燕海峰,等.畜禽精液冷冻损伤保护研究进展.中国畜牧杂志,2019,55(2):33-38. DOI:10.19556/j.0258-7033.2019-02-033
YU Z G, JIANG J, YAN H F, et al. Research progress on frozen damage protection of semen in livestock and poultry. Chinese Journal of Animal Science, 2019,55(2):33-38. (in Chinese with English abstract)
doi: 10.19556/j.0258-7033.2019-02-033
[59]   徐松山.鸡精液低温保存技术和精子抗冻性研究.北京:中国农业科学院,2017.
XU S S. Hypothermic preservation technology of chicken semen and investigate of sperm freezability. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract)
[60]   HAFEZ B, HAFEZ E S E. Reproduction in Farm Animals. 7th ed. Pennsylvania, US: Lea & Febiger, 2016.
[61]   KIM H J, LEE J H, HUR Y B, et al. Marine antifreeze proteins: structure, function, and application to cryo-preservation as a potential cryoprotectant. Marine Drugs, 2017,15(2):15020027. DOI:10.3390/md15020027
doi: 10.3390/md15020027
[62]   樊绍刚,张党权,邓顺阳,等.抗冻蛋白和冰核蛋白对植物抗冻性能的作用机制.经济林研究,2009,27(2):125-130. DOI:1003-8981(2009)02-0125-06
FAN S G, ZHANG D Q, DENG S Y, et al. Mechanism of antifreeze protein and ice nucleoprotein on plant antifreeze activity. Economic Forest Research, 2009,27(2):125-130. (in Chinese with English abstract)
doi: 1003-8981(2009)02-0125-06
[63]   KALEDA A, TSANEV R, KLESMENT T, et al. Ice cream structure modification by ice-binding proteins. Food Chemistry, 2018,246:164-171. DOI:10.1016/j.foodchem.2017.10.152
doi: 10.1016/j.foodchem.2017.10.152
[64]   于晶,扈莹莹,温荣欣,等.植物源抗冻蛋白作用机制及其在食品中的应用.食品科学,2019,40(23):1-11. DOI:10.7506/spkx1002-6630-20181109-100
YU J, HU Y Y, WEN R X, et al. Antifreeze of mechanism of plant antifreeze proteins and its application in food. Food Science, 2019,40(23):1-11. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20181109-100
[1] Xin YUAN,Liang LI,Hua HE,Shenqiang HU,Jiwen WANG. Construction of a CRISPR-Cas9 knockdown lentiviral plasmid of goose (Anas platyrhynchos) stearoyl-coenzyme A desaturase gene[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 529-538.
[2] Yao LU,Shengguo FANG. Expression profile of β-defensin genes and the effect of stocking density on them in Chinese alligator blood[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 604-610.
[3] Gongga,Yifei WANG, Gesangzhuoma, Suolangsizhu, Nimayangzong, Labaciren. Identification of capsular serotype D Pasteurella multocida isolated from Tibetan swine and its biological characteristics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 611-617.
[4] Jincheng HE,Xian ZHANG,Suqing LI,Qianfu GAN. Effects of ambient temperature and relative humidity and measurement site on the cow’s body temperature measured by infrared thermography[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 500-508.
[5] Zhuo LI,Lang CHEN,Tao JIANG,Lixia LIU,Li ZHANG,Rui WANG,Yaodong LI. Single nucleotide polymorphism and bioinformatics analysis of DQA2 gene in yak[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 376-382.
[6] Ge GAO,Jiakun WANG. Research advances in polysaccharide utilization loci of rumen microorganism[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 263-270.
[7] Yitian YING,Jing YANG,Bingxuan YAN,Fengjin SHAO,Xun TAN. Effect of mastitis on the function of milk-derived exosomes: observations from mammary epithelial cells[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 383-390.
[8] Xiaolian CHEN,Wenjing SONG,Quanyong ZHOU,Qiongli SONG,Zhiheng ZOU,Linxiu LIU,Lizhen HU,Qipeng WEI,Jingsheng YAN, Dalieya?AHEMAITI. Effects of Callicarpa kwangtungensis Chun. extract on reproductive performance, immune function, antioxidant capacity and intestinal flora of sows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 360-368.
[9] Tiantian GU,Yong TIAN,Wei ZHOU,Guofa LIU,Li CHEN,Tao ZENG,Xinsheng WU,Qi XU,Guohong CHEN,Lizhi LU. Effects of caged stress on the duodenal tissue structure, antioxidant capacity and gene mRNA expression level of Shaoxing duck[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 234-242.
[10] Yan ZHAO,Junjie JIN,Minmin REN,Fengxiang HOU,Suzhen LIU,Chengjun XUE,Yingping XIAO. Virulence genes and drug resistance characteristics of Escherichia coli in laying duck under the two different breeding modes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 254-262.
[11] Jun GUO,Liang QU,Taocun DOU,Manman SHEN,Yuping HU,Kehua WANG. Comparison of genetic parameter evaluation methods for body mass of the five-week-old layer[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 746-750.
[12] Ruowei GUAN,Jianxin LIU. Causes of susceptibility to diseases and early monitoring of common diseases in perinatal dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 519-525.
[13] Li FU,Ying LU,Yingzhong XIE,Hongbin MA,Ende XING,Xiumin TIAN,Minghe NIE. Impact of short-term rest-grazing on vegetation and soil characteristics of family ranch in desert steppe area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 563-573.
[14] Zhihong TANG,Ningning XU,Jun’an YE. Effect of compound probiotics and yeast culture on milk production, rumen fermentation and serum anti-stress parameters of heat-stressed dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 611-618.
[15] Zhixin YI,Yilong JIANG,Qiuhong WANG,Qilin XU,Xinxing WANG,Guilin MO,Dongmei JIANG,Bo KANG. Effects of spermine on immune organ indexes and expression levels of genes related to immune factors in geese[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 596-602.