Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (2): 256-262    DOI: 10.3785/j.issn.1008-9209.2018.05.151
Agricultural engineering     
Hyperspectral imaging for early detection of soybean mosaic disease based on convolutional neural network model
Jiangsheng GUI1,2(),Zixian WU1,Kai LI2
1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Download: HTML   HTML (   PDF(2732KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to reduce the impact of mosaic disease on soybean production and explore a theoretical basis for rapid detection of early soybean mosaic disease, a novel hyperspectral detection method for early soybean mosaic disease based on convolutional neural network (CNN) model was proposed. First, soybean samples inoculated separately with SC3, SC7 viruses and normal soybean samples (Nannong 1138-2) were collected through a hyperspectral system. A region of 40 pixel×40 pixel was selected as the region of interest (ROI) and the average spectral information of ROI was extracted. Then, the CNN model was established based the hyperspectral image. Finally, the recognition rate of the training set in the CNN model reached 94.79%, and the recognition rate of the prediction set reached 92.08%. The recognition rate of the mosaic leaf inoculated with SC3 virus was 88.75%, and the recognition rate of the mosaic leaf inoculated with SC7 virus was 93.13%, and the recognition rate of the normal leaf was 94.38%. Compared with the least square-support vector machine (LS-SVM) and extreme learning machine (ELM) models, the CNN model can more fully extract the deep features of the spectrum, and the extracting effect was significantly improved. Thus, this research shows that the CNN model can achieve the detection of early soybean mosaic disease more accurately, and combining the CNN model with hyperspectral methods also provides a new idea for plant disease detection.



Key wordssoybean      mosaic disease      hyperspectral detection      convolutional neural network     
Received: 15 May 2018      Published: 25 April 2019
CLC:  S 431.9  
Corresponding Authors: Jiangsheng GUI     E-mail: jsgui@zstu.edu.cn
Cite this article:

Jiangsheng GUI,Zixian WU,Kai LI. Hyperspectral imaging for early detection of soybean mosaic disease based on convolutional neural network model. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 256-262.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.05.151     OR     http://www.zjujournals.com/agr/Y2019/V45/I2/256


基于卷积神经网络模型的大豆花叶病初期高光谱检测

为减轻花叶病对大豆产量的影响,实现对大豆花叶病害初期的快速检测,本文提出了一种基于卷积神经网络(convolutional neural network, CNN)模型的大豆花叶病害的诊断识别方法。首先对分别接种SC3、SC7病毒7 d后发病初期及正常的‘南农1138-2’大豆样本各80片(共计240片)进行高光谱图像采集,根据其图像信息提取并计算感兴趣区域的平均光谱值,建立基于高光谱图像的CNN模型。最终模型训练集识别率达到94.79%,预测集识别率达到92.08%,其中对接种SC3病毒的花叶病叶片识别率为88.75%,对接种SC7病毒的花叶病叶片识别率为93.13%,对正常叶片识别率为94.38%。对比最小二乘支持向量机和极限学习机模型,CNN模型能够更充分提取光谱的深层特征信息,识别效果显著提高。研究表明,基于高光谱图像的CNN模型能够更精确地实现对大豆花叶病初期检测,将CNN与高光谱结合的方法也为病害检测提供了一种新思路。


关键词: 大豆,  花叶病,  高光谱检测,  卷积神经网络 
Fig. 1 Hyperspectral imaging system
Fig. 2 Structure of the LeNet convolutional network
Fig. 3 Flow chart of convolutional neural network processing
Fig. 4 Hyperspectral image of soybean samples
Fig. 5 Average spectral curve of normal and mosaic soybean samples

模型

model

识别率 Recognition rate

训练集

Training set

预测集

Prediction set

接种SC3叶

Leaf inoculated with SC3

接种SC7叶

Leaf inoculated with SC7

正常叶

Normal leaf

LS-SVM 86.70 85.63 82.50 86.25 88.13
ELM 89.59 87.50 85.00 88.13 89.38
CNN 94.79 92.08 88.75 93.13 94.38
Table 1 Recognition rates of different models%
[1]   智海剑,盖钧镒 .大豆花叶病毒及抗性遗传的研究进展.大豆科学,2006,25(2):174-180.
ZHI H J , GAI J Y . Research progress on genetics of soybean mosaic virus and resistance. Soybean Science, 2006,25(2):174-180. (in Chinese with English abstract)
[2]   CROSSLIN J M , LIN H , MUNYANEZA J E . Detection of ‘Candidatus Liberibacter solanacearum’ in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwestern Entomologist, 2011,36(2):125-135.
[3]   MASSART S , OlMOS A , JIJAKLI H , et al . Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research, 2014,188:90-96.
[4]   王文桥,马平,张小风,等 .生物源杀菌剂与化学药剂协调防控番茄病害.植物保护学报,2011,38(1):75-80.
WANG W Q , MA P, ZHANG X F , et al . Biological source fungicides and chemical agents coordinated to prevent tomato diseases. Journal of Plant Protection, 2011,38(1):75-80. (in Chinese with English abstract)
[5]   RAVICHANDRAN N K , WIJESINGHE R E , SHIRAZI M F , et al . In vivo monitoring on growth and spread of gray leaf spot disease in Capsicum annuum leaf using spectral domain optical coherence tomography. Journal of Spectroscopy, 2016(4):1-6.
[6]   GARCIA-RUIZ F , SANKARAN S , MAJA J M , et al . Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers & Electronics in Agriculture, 2013,91:106-115.
[7]   王献锋,张善文,王震,等 .基于叶片图像和环境信息的黄瓜病害识别方法.农业工程学报,2014,30(14):148-153.
WANG X F , ZHANG S W , WANG Z , et al . Recognition method of cucumber diseases based on leaf image and environmental information. Transactions of the CSAE, 2014,30(14):148-153. (in Chinese with English abstract)
[8]   ADEBAYO S E , HASHIM N , ABDAN K , et al . Application and potential of backscattering imaging techniques in agricultural and food processing:a review. Journal of Food Engineering, 2016,169:155-164.
[9]   谢传奇,方孝荣,邵咏妮,等 .番茄叶片早疫病近红外高光谱成像检测技术.农业机械学报,2015,46(3):315-319.
XIE C Q , FANG X R , SHAO Y N , et al . Detection of early blight on tomato leaves using near-infrared hyperspectral imaging technique. Journal of Agricultural Machinery, 2015,46(3):315-319. (in Chinese with English abstract)
[10]   KRISHNA G , SAHOO R N , PARGAL S , et al . Assessing wheat yellow rust disease through hyperspectral remote sensing. ISPRS Technical CommissionⅧSymposium at Hyderabad, Pakistan, 2014. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2014,XL- 8:1413-1416.
[11]   CAPORASO N , WHITWORTH M B , GREBBY S , et al . Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging. Journal of Food Engineering, 2018,227:18-29.
[12]   ZHANG J , WANG N , YUAN L , et al . Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements. Biosystems Engineering, 2017,162:20-29.
[13]   LIAGHAT S , EHSANI R , MANSOR S , et al . Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 2014,35(10):3427-3439.
[14]   刘思伽,田有文,张芳,等 .采用二次连续投影法和BP人工神经网络的寒富苹果病害高光谱图像无损检测.食品科学,2017,38(8):277-282.
LIU S J , TIAN Y W , ZHANG F , et al . Hyperspectral imaging for nondestructive detection of Hanfu apple diseases using successive projections algorithm and BP neural network. Food Science, 2017,38(8):277-282. (in Chinese with English abstract)
[15]   ZHAO Y R , LI X , YU K Q , et al . Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease. Scientific Reports, 2016,6(1):27790-27799.
[16]   CAO X , ZHOU F , XU L , et al . Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Transactions on Image Processing, 2018,27(5):2354-2367.
[17]   CHEN Y , JIANG H , LI C , et al . Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience & Remote Sensing, 2016,54(10):6232-6251.
[18]   YU S Q , JIA S , XU C Y . Convolutional neural networks for hyperspectral image classification. Neurocomputing, 2017,219:88-98.
[19]   SAVITZKY A , GOLAY M J E . Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964,36(8):1627-1639.
[20]   CHATFIELD K , SIMONYAN K , VEDALDI A , et al . Return of the devil in the details: delving deep into convolutional nets. Eprint Arxiv, 2014:1-11.
[21]   VOLPI M , TUIA D . Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Transactions on Geoscience & Remote Sensing, 2016(10):1-13.
[22]   KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks: NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems, Nevada, US, December 3-6, 2012. [S. l.]: [s. n.] 2012:1097-1105.
[23]   MAO Q , DONG M , HUANG Z , et al . Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Transactions on Multimedia, 2014,16(8):2203-2213.
[24]   JADERBERG M , SIMONYAN K , VEDALDI A , et al . Reading text in the wild with convolutional neural networks. International Journal of Computer Vision, 2014,116(1):1-20.
[25]   SUYKENS J A K , GESTEL T V , BRABANTER J D , et al . Least square support vector machine. Euphytica, 2002,2(2):1599-1604.
[26]   HUANG G B , ZHU Q Y , SIEW C K . Extreme learning machine: theory and applications. Neurocomputing, 2006,70(1/2/3):489-501.
[27]   杨丹,赵海滨,龙哲 .MATLAB图像处理实例详解.北京:清华大学出版社,2013.
YANG D , ZHAO H B , LONG Z . Detailed Explanation of MATLAB Image Processing. Beijing: Tsinghua University Press, 2013. (in Chinese)
[28]   沈焕锋 .ENVI遥感影像处理方法.武汉:武汉大学出版社,2009.
SHEN H F . ENVI Remote Sensing Image Processing Method. Wuhan: Wuhan University Press, 2009. (in Chinese)
[29]   黄崑 .Excel统计分析基础教程.北京:清华大学出版社,2011.
HUANG K . Excel Statistical Analysis Basic Tutorial. Beijing: Tsinghua University Press, 2011. (in Chinese)
[1] PANG Ting, SHUAI Peng, CHEN Ping, DU Qing, FU Zhidan, YANG Wenyu, YONG Taiwen. Effects of different nodulation varieties and row spacings on nodule growth, dry matter accumulation and distribution of relay strip intercropping soybean[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 451-461.
[2] FANG Ping, LIU Weiguo, LIU Xiaode, LIU Ting, CHI Xiaoyu, XU Yan, PANG Ting, PENG Xiao, CAI Ling, YANG Wenyu. Effect of maize-soybean intercropping on quality of vegetable soybean[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 556-.
[3] Cheng Yunqing1*, Zhang Qi2, Liu Jianfeng1, Zhang Huidi1, Zhang Chunji1. Studies on pollen fertility regulated by exogenous ethylene in soybean[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 25-32.
[4] MA Lin1, ZHOU Lian1, ZHOU Zheng-jian1, TANG Gui-xiang2, SHEN Zhi-cheng2, SHOU Hui-xia1*. Establishment of methods for identifying rapidly and precisely transgenic rice and soybean containing herbicide-resistant gene bar and EPSPS[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 647-654.
[5] FAN Juexin1,2, ZHANG Bin2,LI Lili1, YUAN Xiaoxue1, GENG Meimei1, LUO Jiajie2. Effects of soybean isoflavones on reproductive organ development and biochemical indices of male Xiang pigs[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 477-484.
[6] LEI Ting,XIANG Dabing,GUO Kai,YANG Wenyu, LIU Zengyu,CHEN Xiaorong. Effects of phosphorus and potassium fertilizers on dry matter accumulation, distribution and yield of relay strip intercropping soybean.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 318-328.
[7] WAN Yan,YAN Yan hong,YANG Wen yu. Effects of foliar spraying uniconazole on growth and nitrogen metabolism of relay strip intercropping soybeanunder different nitrogen levels.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 185-196.