Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (4): 439-450    DOI: 10.3785/j.issn.1008-9209.2021.04.261
Special Topic: Crop Phenotyping Technologies and Applications     
Application of multi-layer discrete anisotropic radiative transfer model in vertical distribution inversion of maize leaf area index
Zhen DONG1,2(),Guijun YANG1(),Lin SUN2,Hao YANG1,Yaohui ZHU1,Lei LEI1,Riqiang CHEN1,Chengjian ZHANG1,Miao LIU1
1.Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
2.College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
Download: HTML   HTML (   PDF(2268KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to more accurately monitor the vertical distribution of the leaf area index (LAI) of maize, we propose a conditionally constrained LAI vertical distribution inversion method based on the simulation dataset constructed by the discrete anisotropic radiative transfer (DART) model. First, the simulation effects of DART model on canopy reflectance and photosynthetically active radiation (PAR) were evaluated based on the three-layer vertical distribution scenario, and constructed the corresponding simulation dataset with PAR. Second, a single parameter inversion model for LAI and PAR was built based on the simulated dataset. Finally, using the single parameter inversion model as a priori knowledge, the inversion of the vertical distribution of maize canopy LAI based on the hyperspectral vegetation index was realized by solving the constraint problem. The results showed that the accuracy of the constraint optimization inversion model was higher than that of the single parameter inversion model. The coefficient of determination (R2) of LAI inversion results for top layer of maize increased by 0.022, root-mean-square error (RMSE) decreased by 0.016 m2/m2, and normalized root-mean-square error (NRMSE) decreased by 1.3%. The R2 of LAI inversion results for middle layer of maize increased by 0.08, RMSE decreased by 0.219 m2/m2, and NRMSE decreased by 10.1%. The R2 of LAI inversion results for bottom layer of maize increased by 0.069, RMSE decreased by 0.041 m2/m2, and NRMSE decreased by 4.6%. Therefore, it can be concluded that the inversion of vertical distribution of LAI in maize canopy using the conditional constraint optimization method can effectively improve the inversion accuracy.



Key wordsagricultural remote sensing      discrete anisotropic radiative transfer model      photosynthetically active radiation      leaf area index      vertical distribution     
Received: 26 April 2021      Published: 02 September 2021
CLC:  TP 751  
Corresponding Authors: Guijun YANG     E-mail: jmhshdzh@163.com;yanggj@nercita.org.cn
Cite this article:

Zhen DONG,Guijun YANG,Lin SUN,Hao YANG,Yaohui ZHU,Lei LEI,Riqiang CHEN,Chengjian ZHANG,Miao LIU. Application of multi-layer discrete anisotropic radiative transfer model in vertical distribution inversion of maize leaf area index. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 439-450.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.04.261     OR     http://www.zjujournals.com/agr/Y2021/V47/I4/439


多层离散各向异性辐射传输模型在玉米叶面积指数垂直分布反演中的应用

为更准确地监测玉米叶面积指数(leaf area index, LAI)垂直分布,以多层离散各向异性辐射传输(discrete anisotropic radiative transfer, DART)模型构建的模拟数据集为基础,提出一种条件约束的LAI垂直分布反演方法。首先,基于3层垂直分布场景,评价DART模型对玉米冠层反射率和光合有效辐射(photosynthetically active radiation, PAR)的模拟效果,并构建相应的模拟数据集。其次,基于模拟数据集构建LAI和PAR单参数反演模型。最后,以单参数反演模型为先验知识,通过求解约束化问题实现基于高光谱植被指数的玉米冠层LAI垂直分布反演。结果表明:相较于单参数反演模型,约束优化条件下的反演模型精度更高。玉米上层LAI反演结果的决定系数(R2)提高0.022,均方根误差(root-mean-square error, RMSE)降低0.016 m2/m2,归一化均方根误差(normalized root-mean-square error, NRMSE)降低1.3%;玉米中层LAI反演结果的R2提高0.08,RMSE降低0.219 m2/m2,NRMSE降低10.1%;玉米下层LAI反演结果的R2提高0.069,RMSE降低0.041 m2/m2,NRMSE降低4.6%。说明利用条件约束优化的方法进行玉米冠层LAI的垂直分布反演,能有效提高反演精度。


关键词: 农业遥感,  离散各向异性辐射传输模型,  光合有效辐射,  叶面积指数,  垂直分布 
Fig. 1 Simulation scenario of maize three-layer vertical distribution
Fig. 2 Sensitivity analysis results of input parameters of DART modelLAI: Leaf area index; Sz: Solar zenith angle; LAD: Leaf angle distribution; LCC: Leaf chlorophyll content; H: Height.
Fig. 3 Accuracy evaluation of PAR simulation results under different leaf angle distribution (LAD) and voxel size (Vsize) combinations
Fig. 4 R2 of the reflectivity simulation results at each wavelength
Fig. 5 Accuracy evaluation of canopy reflectance simulation results
Fig. 6 Accuracy evaluation of PAR simulation results

分层

Layer

回归模型

Regression model

模拟数据集

Simulated dataset

实测数据集

Measured dataset

RMSE/(m2/m2)NRMSE/%RMSE/(m2/m2)NRMSE/%
上层 Top layery=e[4.12+271.87×DV560,620]0.0846.40.1219.9
中层 Middle layery=e[31.49+31.16×R920,970]0.36514.20.65619.4
下层 Bottom layery=e[16.66+17.74×R790,950]0.3389.50.58014.9
Table 1 Screening results of LAIc single parameter inversion model

分层

Layer

回归模型

Regression model

模拟数据集

Simulated dataset

实测数据集

Measured dataset

RMSENRMSERMSENRMSE
上层 Top layery=e[24.31+51.09×ND530,720]3.118.13.869.4
中层 Middle layery=e[2.33118.8×DV790,850]1.359.62.4115.9
下层 Bottom layery=e[43.5542.24×R780,920]0.799.31.0813.7
Table 2 Screening results of PARf single parameter inversion model
Fig. 7 LAI inversion results of different models

反演模型

Inversion model

分层

Layer

R2RMSE/(m2/m2)NRMSE/%

单参数模型

Single parameter model

上层

Top layer

0.9000.1219.9

中层

Middle layer

0.6940.64229.7

下层

Bottom layer

0.5550.37535.0

约束化模型

Constrained model

上层

Top layer

0.9220.1058.6

中层

Middle layer

0.7740.42319.6

下层

Bottom layer

0.6240.33430.4
Table 3 Accuracy evaluation of LAI inversion model
[1]   WATSON D J. Comparative physiological studies on the growth of field crops: Ⅰ. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 1947(1):41-76.
[2]   ROUSE J W JR, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS//Third ERTS Symposium. [S.
l.: s. n.], 1973.
[3]   JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969,50(4):663-666.
[4]   CLEVERS J, KOOISTRA L, BRANDE M VAN DEN. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing, 2017,9(5):405. DOI:10.3390/rs9050405
doi: 10.3390/rs9050405
[5]   SUN Y H, REN H Z, ZHANG T Y, et al. Crop leaf area index retrieval based on inverted difference vegetation index and NDVI. IEEE Geoscience and Remote Sensing Letters, 2018,15(11):1662-1666. DOI:10.1109/LGRS.2018.2856765
doi: 10.1109/LGRS.2018.2856765
[6]   HABOUDANE D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004,90(3):337-352. DOI:10.1016/j.rse.2003.12.013
doi: 10.1016/j.rse.2003.12.013
[7]   JIN X L, YANG G J, XU X G, et al. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 2015,7(10):13251-13272. DOI:10.3390/rs71013251
doi: 10.3390/rs71013251
[8]   GAO S, NIU Z, HUANG N, et al. Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 2013,24(1):1-8. DOI:10.1016/j.jag.2013.02.002
doi: 10
[9]   CANISIUS F, FERNANDES R. ALOS PALSAR L-band polarimetric SAR data and in situ measurements for leaf area index assessment. Remote Sensing Letters, 2012,3(3/4/5):221-229. DOI:10.1080/01431161.2011.559288
doi: 10.1080/01431161.2011.559288
[10]   VERHOEF W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 1984,16(2):125-141.
[11]   GASTELLU-ETCHEGORRY J P, DEMAREZ V, PINEL V, et al. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sensing of Environment, 1996,58(2):131-156. DOI:10.1016/0034-4257(95)00253-7
doi: 10.1016/0034-4257(95)00253-7
[12]   KUUSK A, NILSON T. A directional multispectral forest reflectance model. Remote Sensing of Environment, 2000,72(2):244-252. DOI:10.1016/S0034-4257(99)00111-X
doi: 10.1016/S0034-4257(99)00111-X
[13]   CHEN J M, LEBLANC S G. A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(5):1316-1337. DOI:10.1109/36.628798
doi: 10.1109/36.628798
[14]   YANG G J, ZHAO C J, LIU Q, et al. Inversion of a radiative transfer model for estimating forest LAI from multisource and multiangular optical remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(3):988-1000. DOI:10.1109/TGRS.2010.2071416
doi: 10.1109/TGRS.2010.2071416
[15]   FANG H L, LIANG S L, KUUSK A. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sensing of Environment, 2003,85(3):257-270. DOI:10.1016/S0034-4257(03)00005-1
doi: 10.1016/S0034-4257(03)00005-1
[16]   MYNENI R B, HOFFMAN S, KNYAZIKHIN Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 2001,83(1/2):214-231. DOI:10.1016/S0034-4257(02)00074-3
doi: 10.1016/S0034-4257(02)00074-3
[17]   YANG W Z, TAN B, HUANG D, et al. MODIS leaf area index products: from validation to algorithm improvement. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(7):1885-1898. DOI:10.1109/TGRS.2006.871215
doi: 10.1109/TGRS.2006.871215
[18]   YANG B, KNYAZIKHIN Y, M?TTUS M, et al. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: theoretical basis. Remote Sensing of Environment, 2017,198:69-84. DOI:10.1016/j.rse.2017.05.033
doi: 10.1016/j.rse.2017.05.033
[19]   BACOUR C, BARET F, BéAL D, et al. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: principles and validation. Remote Sensing of Environment, 2006,105(4):313-325. DOI:10.1016/j.rse.2006.07.014
doi: 10.1016/j.rse.2006.07.014
[20]   DARVISHZADEH R, SKIDMORE A, SCHLER F M, et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment, 2008,112(5):2592-2604. DOI:10.1016/j.rse.2007.12.003
doi: 10.1016/j.rse.2007.12.003
[21]   HOUBORG R, MCCABE M, CESCATTI A, et al. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC). Remote Sensing of Environment, 2015,159:203-221. DOI:10.1016/j.rse.2014.12.008
doi: 10.1016/j.rse.2014.12.008
[22]   王强,刘丹丹,张为成.基于DART模型森林结构参数反演.黑龙江工程学院学报(自然科学版),2012,26(2):32-35. DOI:10.19352/j.cnki.issn1671-4679.2012.02.009
WANG Q, LIU D D, ZHANG W C. Retrieval of conifer LAI based on the multiple-angle model. Journal of Heilongjiang Institute of Technology, 2012,26(2):32-35. (in Chinese with English abstract)
doi: 10.19352/j.cnki.issn1671-4679.2012.02.009
[23]   ASIM B, RANDOLPH W, VALERIE T, et al. Investigating the utility of wavelet transforms for inverting a 3-D radiative transfer model using hyperspectral data to retrieve forest LAI. Remote Sensing, 2013,5(6):2639-2659. DOI:10.3390/rs5062639
doi: 10.3390/rs5062639
[24]   LIU N, XIAO Z Q, SHI H Y, et al. A method for estimating leaf area index from Landsat data based on Dart model and Gaussian process//2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York, U.S.: IEEE, 2019.
[25]   HIROSE T. Development of the Monsi-Saeki theory on canopy structure and function. Annals of Botany, 2005,95(3):483-494. DOI:10.1093/aob/mci047
doi: 10.1093/aob/mci047
[26]   靳华安,王锦地,柏延臣,等.基于作物生长模型和遥感数据同化的区域玉米产量估算.农业工程学报,2012,28(6):162-173. DOI:10.3969/j.issn.1002-6819.2012.06.027
JIN H A, WANG J D, BO Y C, et al. Regional maize yield estimation based on crop growth model and remote sensing data assimilation. Transactions of the CSAE, 2012,28(6):162-173. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2012.06.027
[27]   于海洋.基于作物生长模型的吉林西部地块玉米产量遥感估算研究.长春:吉林大学,2020.
YU H Y. Research on remote sensing estimation of maize yield in plots in west Jilin based on crop growth model. Changchun: Jilin University, 2020. (in Chinese with English abstract)
[28]   姚延娟,范闻捷,刘强,等.玉米全生长期叶面积指数收获测量法的改进.农业工程学报,2010,26(8):189-194. DOI:10.3969/j.issn.1002-6819.2010.08.032
YAO Y J, FAN W J, LIU Q, et al. Improved harvesting method for corn LAI measurement in corn whole growth stages. Transactions of the CSAE, 2010,26(8):189-194. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2010.08.032
[29]   DUTHOIT S, DEMAREZ V, GASTELLU-ETCHEGORRY J P, et al. Assessing the effects of the clumping phenomenon on BRDF of a maize crop based on 3D numerical scenes using DART model. Agricultural and Forest Meteorology, 2008,148(8/9):1341-1352. DOI:10.1016/j.agrformet.2008.03.011
doi: 10.1016/j.agrformet.2008.03.011
[30]   GUILLEVIC P C, BORK-UNKELBACH A, GOTTSCHE F M, et al. Directional viewing effects on satellite land surface temperature products over sparse vegetation canopies: a multisensor analysis. IEEE Geoscience and Remote Sensing Letters, 2013,10(6):1464-1468. DOI:10.1109/LGRS.2013.2260319
doi: 10.1109/LGRS.2013.2260319
[31]   MALENOVSKY Z, HOMOLOVá L, ZURITA-MILLA R, et al. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment, 2013,131(8):85-102. DOI:10.1016/j.rse.2012.12.015
doi: 10.1016/j.rse.2012.12.015
[32]   SALTELLI A, TARANTOLA S, CHAN P S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 1999,41(1):39-56. DOI:10.1080/00401706.1999.10485594
doi: 10.1080/00401706.1999.10485594
[33]   祁红彦,周广胜,许振柱.北方玉米冠层光合有效辐射垂直分布及影响因子分析.气象与环境学报,2008,24(1):22-26. DOI:10.3969/j.issn.1673-503X.2008.01.006
QI H Y, ZHOU G S, XU Z Z. Vertical distribution characteristics of photosynthetically active radiation in maize canopy and its controlling factors. Journal of Meteorology and Environment, 2008,24(1):22-26. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-503X.2008.01.006
[34]   祁红彦,周广胜,李荣平,等.玉米群体消光系数的动态变化及其模拟.安徽农业科学,2011,39(29):17826-17829. DOI:10.3969/j.issn.0517-6611.2011.29.028
QI H Y, ZHOU G S, LI R P, et al. Dynamic variation of extinction coefficient of corn population and its simulation. Journal of Anhui Agricultural Sciences, 2011,39(29):17826-17829. (in Chinese with English abstract)
doi: 10.3969/j.issn.0517-6611.2011.29.028
[35]   TYRRELL ROCKAFELLAR R. Lagrange multipliers and optimality. SIAM Review, 1993,35(2):183-238. DOI:10.1137/1035044
doi: 10.1137/1035044
[36]   VICARI M B, PISEK J, DISNEY M. New estimates of leaf angle distribution from terrestrial LiDAR: comparison with measured and modelled estimates from nine broadleaf tree species. Agricultural & Forest Meteorology, 2019,264:322-333. DOI:10.1016/j.agrformet.2018.10.021
doi: 10.1016/j.agrformet.2018.10.021
[37]   RYU Y, SONNENTAG O, NILSON T, et al. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agricultural & Forest Meteorology, 2010,150:63-76. DOI:10.1016/j.agrformet.2009.08.007
doi: 10.1016/j.agrformet.2009.08.007
[38]   CHEN J M, CIHLAR J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 1996,55(2):153-162. DOI:10.1016/0034-4257(95)00195-6
doi: 10.1016/0034-4257(95)00195-6
[39]   翟羽娟,张艳红,刘兆礼,等.基于高光谱影像的玉米LAI反演模型研究.江西农业学报,2015,27(10):58-61. DOI:10.3969/j.issn.1001-8581.2015.10.013
ZHAI Y J, ZHANG Y H, LIU Z L, et al. Study on inversion model of maize LAI based on hyperspectral images. Acta Agriculturae Jiangxi, 2015,27(10):58-61. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-8581.2015.10.013
[40]   程雪,贺炳彦,黄耀欢,等.基于无人机高光谱数据的玉米叶面积指数估算.遥感技术与应用,2019,34(4):775-784. DOI:10.19386/j.cnki.jxnyxb.2015.10.013
CHENG X, HE B Y, HUANG Y H, et al. Estimation of corn leaf area index based on UAV hyperspectral image. Remote Sensing Technology and Application, 2019,34(4):775-784. (in Chinese with English abstract)
doi: 10.19386/j.cnki.jxnyxb.2015.10.013
[41]   束美艳,陈向阳,王喜庆,等.基于高光谱数据的玉米叶面积指数和生物量评估.智慧农业(中英文),2021,3(1):29-39. DOI:10.12133/j.smartag.2021.3.1.202102-SA004
SHU M Y, CHEN X Y, WANG X Q, et al. Evaluation of maize leaf area index and biomass based on hyperspectral data. Smart Agriculture, 2021,3(1):29-39. (in Chinese with English abstract)
doi: 10.12133/j.smartag.2021.3.1.202102-SA004
[42]   汪涛,董斌,黄文江,等.玉米冠层内光合有效辐射和叶面积指数垂直分布模拟.玉米科学,2016,24(2):120-128. DOI:10.13597/j.cnki.maize.science.20160222
WANG T, DONG B, HUANG W J, et al. Simulation of photosynthetically active radiation and leaf area index vertical distribution in maize canopy. Journal of Maize Sciences, 2016,24(2):120-128. (in Chinese with English abstract)
doi: 10.13597/j.cnki.maize.science.20160222
[43]   张明政.基于多层PROSAIL模型的玉米冠层叶面积指数垂直分布反演.山东,泰安:山东农业大学,2016.
ZHANG M Z. Retrieval of the vertical distribution of corn canopy leaf area index based on the multilayer PROSAIL model. Tai’an, Shandong: Shandong Agricultural University, 2016. (in Chinese with English abstract)
[1] ZHANG Ning, ZHANG Qingguo, YU Haijing, CHENG Mengdi, DONG Shijie. Sensitivity analysis for parameters of crop growth simulation model[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 107-115.