Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (5): 566-576    DOI: 10.3785/j.issn.1008-9209.2021.02.221
Plant protection     
Construction and application of luminescent strain of Pectobacterium carotovorum harboring luxCDABE operon
Lingkun ZHONG(),Cuihong XU,Zeming HUANG,Qianli AN,Yan LIANG()
Institute of Biotechnology, College of Agriculture and Biotechnology/Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(4633KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Pectobacterium carotovorum is one of the top ten plant bacterial pathogens in the world. In order to facilitate the observation of the pathogen infection process at the early stage and in vivo quantification of bacterial growth without the tissue extraction, we generated a P. carotovorum strain expressing the luxCDABE operon, which encodes a luciferase and enzymes that produce its substrate, thus bacteria that express this operon emit light spontaneously. The luxCDABE operon was cloned into the vector pBBR1MCS2, and the resulting pBBR1MCS2-luxCDABE plasmid was transformed into P. carotovorum subsp. carotovorum LMG2404, namely LMG2404-LUX. Compared with LMG2404, LMG2404-LUX had no significant differences in growth rate, biofilm formation and motility. Luminescent signal intensities of LMG2404-LUX were linearly correlated with the bacterial concentrations and not significantly reduced after successive subculturing for ten times. In addition, those signals were stable at the temperature and pH suitable for bacterial growth. When inoculating plants, LMG2404-LUX and LMG2404 had similar pathogenicity, and the signal intensity of LMG2404-LUX was positively correlated with its infection and proliferation. Collectively, P. carotovorum tagged with luxCDABE could greatly facilitate rapid bacterial quantification and in vivo observation of bacterial infection in host tissues, which provides a new tool for the research on P. carotovorum.



Key wordsPectobacterium carotovorum      luciferase      bioluminescence      luxCDABE element      soft rot disease     
Received: 22 February 2021      Published: 27 October 2021
CLC:  S 436.31  
Corresponding Authors: Yan LIANG     E-mail: 21926934@qq.com;yanliang@zju.edu.cn
Cite this article:

Lingkun ZHONG,Cuihong XU,Zeming HUANG,Qianli AN,Yan LIANG. Construction and application of luminescent strain of Pectobacterium carotovorum harboring luxCDABE operon. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 566-576.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.02.221     OR     http://www.zjujournals.com/agr/Y2021/V47/I5/566


胡萝卜软腐果胶杆菌lux发光菌株的构建和应用

胡萝卜软腐果胶杆菌(Pectobacterium carotovorum)是世界十大植物细菌性病原之一。为了便于观察该病原菌侵染过程以及进行早期活体定量检测,本研究构建了表达luxCDABE基因的胡萝卜软腐果胶杆菌发光菌株。首先构建了含有luxCDABE基因操纵子的重组质粒,然后转入胡萝卜软腐果胶杆菌LMG2404中,命名为LMG2404-LUX。与LMG2404相比,LMG2404-LUX的生长速率、生物膜形成和游动性无明显差异;光信号强度与菌液浓度呈线性相关;在菌适宜生长条件下,光信号不受温度和pH的影响;经过10次继代培养后,光信号强度无明显减弱。LMG2404-LUX接种植物后,其致病性与LMG2404无明显差异,侵染初期的光信号强度与该菌侵染增殖呈线性相关。综上所述,LMG2404-LUX可以用于胡萝卜软腐果胶杆菌的快速定量以及植物体内的活体检测,为该菌的相关研究提供了新的工具。


关键词: 胡萝卜软腐果胶杆菌,  荧光素酶,  生物发光,  luxCDABE元件,  软腐病 

基因

Gene

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

产物长度

Product length/bp

luxCDABEluxFCCGGAATTCATGACTAAAAAAATTTCATTCAT (EcoRⅠ)5 816
luxRCGCGGATCCATCAACTATCAAACGCTTC (BamHⅠ)
luxCluxCFATTTCATTCATTATTAACGGCCAGG588
luxCRCGGATGATTAGGGTCTACATCAATAAAACT
16S rRNA27FGAGAGTTTGATCCTGGCTCAG1 439
1492RTACGGCTACCTTGTTACGAC
Table 1 Information of primer sequences
Fig. 1 Recombinant plasmid map
Fig. 2 Detection of the recombinant plasmid using agarose gel electrophoresisM: 8000 DNA marker; 1: pBBR1MCS2; 2: pBBR1MCS2-luxCDABE.
Fig. 3 Detection of the amplified luxC products using agarose gel electrophoresisM: 2000 DNA marker; 1: LMG2404-LUX; 2: LMG2404; 3: pBBR1MCS2-luxCDABE.
Fig. 4 Luminescence imaging and colony morphology of LMG2404-LUXA. Luminescent signal imaging (the color bar indicates the luminescent signal intensity: +, strong; -, weak); B. Colony morphology; C. Enlarged view of the single colony.
Fig. 5 Detection of growth curve, biofilm formation and motility of LMG2404-LUXA. LMG2404-LUX growth curve; B. LMG2404-LUX biofilm property; C. LMG2404-LUX motility. CK: Blank medium.
Fig. 6 Effects of continuous subculture and the aging of LMG2404-LUX on luminescent signalsA. Effects of continuous subculture on LMG2404-LUX luminescent signals (the color bar indicates the luminescent signal intensity: 0, the weakest; 10, the strongest); B. Relationships between the aging of LMG2404-LUX and luminescent signal intensity.
Fig. 7 Effects of temperature and pH on luminescent signal intensity of LMG2404-LUXDifferent lowercase letters above the bars indicate significant differences at the 0.05 probability level.
Fig. 8 Correlation of luminescent signal intensity of LMG2404-LUX with bacterial concentrations
Fig. 9 Disease severity of Arabidopsis leaves at different days after infection with LMG2404-LUX0-4 represent disease indexes, and 0 level represents the mildest level of disease, while 4 level represents the severest level of disease. CK: Blank medium.
Fig. 10 Detection of luminescent signal intensity in Arabidopsis leaves after infection with LMG2404-LUXA. Luminescent signal of Arabidopsis leaves at 1, 2, and 3 d after inoculation with LMG2404-LUX, respectively (different lowercase letters above the bars indicate significant differences between different treatments at the same days at the 0.05 probability level); B. Luminescent signal imaging of Arabidopsis leaves at 1 d after inoculation with LMG2404-LUX (the red arrows indicate water-soaking symptoms, and the color bar indicates the light intensity: +, strong; -, weak); C. Luminescent signal of Arabidopsis leaves from 0 to 36 h after inoculation with LMG2404-LUX. CK: Blank medium.
Fig. 11 Symptoms and luminescent signal detection of B. rapa, D. carota and S. tuberosum infected by LMG2404-LUXA. Luminescence imaging of B. rapa, D. carota and S. tuberosum infected by LMG2404-LUX; B-D. Lesion areas of B. rapa, D. carota and S. tuberosum infected by LMG2404-LUX; E-G: Luminescent signal intensities of B. rapa, D. carota and S. tuberosum infected by LMG2404-LUX. CK: Blank medium.
Fig. 12 Expressions of luxCDABE in E. coli and A. tumefaciensThe color bar indicates the luminescent signal intensity (+, strong; -, weak).
[1]   MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 2012,13(6):614-629. DOI:10.1111/j.1364-3703.2012.00804.x
doi: 10.1111/j.1364-3703.2012.00804.x
[2]   PORTIER P, PéDRON J, TAGHOUTI G, et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. International Journal of Systematic and Evolutionary Microbiology, 2019,69(10):3207-3216. DOI:10.1099/ijsem.0.003611
doi: 10.1099/ijsem.0.003611
[3]   AGRIOS G N. Plant diseases caused by prokaryotes: bacteria and mollicutes//AGRIOS G N. Plant Pathology. 5th ed. San Diego, U.S.: Academic Press, 2005:615-703. DOI:10.1016/B978-0-08-047378-9.50018-X
doi: 10.1016/B978-0-08-047378-9.50018-X
[4]   SAHA N D, CHAUDHARY A, SINGH S D, et al. Plant pathogenic microbial communication affected by elevated temperature in Pectobacterium carotovorum subsp. carotovorum. Current Microbiology, 2015,71(5):585-593. DOI:10.1007/s00284-015-0888-5
doi: 10.1007/s00284-015-0888-5
[5]   DJAMI-TCHATCHOU A T, GOSZCZYNSKA T, REDDY G V S, et al. Gene expression response of Arabidopsis thaliana to inoculation with Pectobacterium carotovorum subsp. carotovorum. Journal of Plant Pathology, 2017,99(3):599-607. DOI:10.4454/jpp.v99i3.3949
doi: 10.4454/jpp.v99i3.3949
[6]   PéROMBELON M C M. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 2002,51(1):1-12. DOI:10.1046/j.0032-0862.2001.Shorttitle.doc.x
doi: 10.1046/j.0032-0862.2001.Shorttitle.doc.x
[7]   LIU E, VEGA S, DHALIWAL A, et al. High resolution fluorescence imaging of cell: biomaterial interactions//DUCHEYNE P. Comprehensive Biomaterials Ⅱ. Oxford, UK: Elsevier, 2017:406-423. DOI:10.1016/B978-0-12-803581-8.09824-6
doi: 10.1016/B978-0-12-803581-8.09824-6
[8]   THORNE N, INGLESE J, AULD D S. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chemistry & Biology, 2010,17(6):646-657. DOI:10.1016/j.chembiol.2010.05.012
doi: 10.1016/j.chembiol.2010.05.012
[9]   NA S H, OH M H, JEON H, et al. Imaging of bioluminescent Acinetobacter baumannii in a mouse pneumonia model. Microbial Pathogenesis, 2019,137:103784. DOI:10.1016/j.micpath.2019.103784
doi: 10.1016/j.micpath.2019.103784
[10]   WAIDMANN M S, BLEICHRODT F S, LASLO T, et al. Bacterial luciferase reporters: the Swiss army knife of molecular biology. Bioengineered Bugs, 2011,2(1):8-16. DOI:10.4161/bbug.2.1.13566
doi: 10.4161/bbug.2.1.13566
[11]   GURBATRI C R, LIA I, VINCENT R, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science Translational Medicine, 2020,12(530):eaax0876. DOI:10.1126/scitranslmed.aax0876
doi: 10.1126/scitranslmed.aax0876
[12]   崔庆宇,王明钰,徐海.细菌lux荧光报告系统的研究进展.中国生物工程杂志,2017,37(8):66-71. DOI:10.13523/j.cb.20170810
CUI Q Y, WANG M Y, XU H. Research progress of bacterial lux bioluminescence reporter system. China Biotechnology, 2017,37(8):66-71. (in Chinese with English abstract)
doi: 10.13523/j.cb.20170810
[13]   DANILOV V S, ZAVILGELSKY G B, ZARUBINA A P, et al. The role of luxCDE genes in bioluminescence of bacteria. Moscow University Biological Sciences Bulletin, 2008,63(2):57-61. DOI:10.3103/S009639250802003X
doi: 10.3103/S009639250802003X
[14]   BRUCKBAUER S T, KVITKO B H, KARKHOFF-SCHWEIZER R R, et al. Tn5/7-lux: a versatile tool for the identification and capture of promoters in Gram-negative bacteria. BMC Microbiology, 2015,15(1):1-17. DOI:10.1186/s12866-015-0354-3
doi: 10.1186/s12866-015-0354-3
[15]   SHAH N, NASEBY D C. Bioluminescence-based measurement of viability of Pseudomonas aeruginosa ATCC 9027 harbouring plasmid-based lux genes under the control of constitutive promoters. Journal of Applied Microbiology, 2014,117(5):1373-1387. DOI:10.1111/jam.12635
doi: 10.1111/jam.12635
[16]   STOODLEY P, HALL-STOODLEY L, COSTERTON B, et al. Biofilms, biomaterials, and device-related infections//MODJARRAD K, EBNESAJJAD S. Handbook of Polymer Applications in Medicine and Medical Devices. Oxford, UK: William Andrew Publishing, 2013:77-101. DOI:10.1016/B978-0-323-22805-3.00005-0
doi: 10.1016/B978-0-323-22805-3.00005-0
[17]   CORRAL J, SEBASTIà P, COLL N S, et al. Twitching and swimming motility play a role in Ralstonia solanacearum pathogenicity. mSphere, 2020,5(2):e00740-19. DOI:10.1128/mSphere.00740-19
doi: 10.1128/mSphere.00740-19
[18]   BRODL E, CSAMAY A, HORN C, et al. The impact of LuxF on light intensity in bacterial bioluminescence. Journal of Photochemistry and Photobiology B: Biology, 2020,207:111881. DOI:10.1016/j.jphotobiol.2020.111881
doi: 10.1016/j.jphotobiol.2020.111881
[19]   NIJVIPAKUL S, WONGRATANA J, SUADEE C, et al. LuxG is a functioning flavin reductase for bacterial luminescence. Journal of Bacteriology, 2008,190(5):1531. DOI:10.1128/jb.01660-07
doi: 10.1128/jb.01660-07
[20]   DUNLAP P V. Bioluminescence, microbial//SCHAECHTER M. Encyclopedia of Microbiology. 3rd ed. Oxford, UK: Academic Press, 2009:45-61. DOI:10.1016/B978-0-12-373944-5.90001-4
doi: 10.1016/B978-0-12-373944-5.90001-4
[21]   CRUZ A P Z, FERREIRA V, PIANZZOLA M J, et al. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain. Molecular Plant-Microbe Interactions, 2014,27(3):277-285. DOI:10.1094/MPMI-10-13-0303-FI
doi: 10.1094/MPMI-10-13-0303-FI
[22]   STADEN A D P VAN, HEUNIS T, SMITH C, et al. Efficacy of lantibiotic treatment of Staphylococcus aureus-induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrobial Agents and Chemotherapy, 2016,60(7):3948-3955. DOI:10.1128/aac.02938-15
doi: 10.1128/aac.02938-15
[23]   BAE J W, SEO H B, BELKIN S, et al. An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Analytical and Bioanalytical Chemistry, 2020,412(14):3373-3381. DOI:10.1007/s00216-020-02469-z
doi: 10.1007/s00216-020-02469-z
[24]   梁欢,徐进,王晓宁,等.11种杀菌剂对马铃薯软腐病的防治效果.植物保护,2020,46(5):309-315. DOI:10.16688/j.zwbh.2019278
LIANG H, XU J, WANG X N, et al. Control effects of eleven bactericides on potato soft rot. Plant Protection, 2020,46(5):309-315. (in Chinese with English abstract)
doi: 10.16688/j.zwbh.2019278
[1] Huanhuan WANG,Lei ZHANG,Ying GE,Dandan SONG,Lifeng LOU,Xuedong ZHANG. Effect of c.362277T C mutation on the expression of luciferase in chicken GNAS gene[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 237-242.