Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (5): 647-659    DOI: 10.3785/j.issn.1008-9209.2020.11.121
Animal sciences & veterinary medicine     
Comparison and analysis of antimicrobial resistance of Escherichia coli and Enterococcus isolated from animals in Jinhua City and Taizhou City of Zhejiang Province
Biao TANG1,2(),Yun HAO1,2,Jiahui LIN3,Jingge WANG2,4,Xiaofeng JI1,2,Mingrong QIAN1,2,Hua YANG1,2()
1.State Key Laboratory of Quality Safety and Risk Factor Prevention and Control of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
2.Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
3.College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
4.College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
Download: HTML   HTML (   PDF(1068KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To investigate the antimicrobial resistance of bacteria from animals in Jinhua City and Taizhou City of Zhejiang Province in May of 2020, a total of 284 anal swab samples were randomly collected from seven livestock and poultry farms in the two cities, respectively. Escherichia coli and Enterococcus were isolated by selective culture media and were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The minimal inhibitory concentration (MIC) was determined by broth microdilution method. The results showed that the antimicrobial resistance rate of E. coli to tetracycline was the highest (87.5%), followed by sulfamethoxazole (81.2%), while the antimicrobial resistance rate to colistin was the lowest (0%) in Jinhua City. In addition, the antimicrobial resistance rate of E. coli to sulfamethoxazole was the highest (97.1%), and the resistance rates to meropenem and colistin were both 0% in Taizhou City. The antimicrobial resistance rate of Enterococcus to sulfamethoxazole was 100% in both cities, followed by tamoxifen (98.6%). No amoxicillin/clavulanate and vancomycin resistant Enterococcus was found in the two cities. In terms of the overall antimicrobial resistance rate, MIC distribution and antimicrobial resistance pattern, the level of antimicrobial resistance in Taizhou was higher than that in Jinhua. In conclusion, through monitoring and comparing the level of antimicrobial resistance in livestock and poultry breeding in two cities, it is found that the levels of antimicrobial resistance of E. coli and Enterococcus from animals are high and different. Therefore, continuous surveillance of antimicrobial resistance dynamics is essential through veterinary antibiotics reduction initiatives by agricultural authorities.



Key wordslivestock and poultry      Escherichia coli      Enterococcus      antimicrobial resistance      Jinhua City      Taizhou City     
Received: 12 November 2020      Published: 27 October 2021
CLC:  S 852.6  
Corresponding Authors: Hua YANG     E-mail: tb_411@163.com;yanghua@zaas.ac.cn
Cite this article:

Biao TANG,Yun HAO,Jiahui LIN,Jingge WANG,Xiaofeng JI,Mingrong QIAN,Hua YANG. Comparison and analysis of antimicrobial resistance of Escherichia coli and Enterococcus isolated from animals in Jinhua City and Taizhou City of Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 647-659.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.11.121     OR     http://www.zjujournals.com/agr/Y2021/V47/I5/647


浙江省2市动物源大肠埃希菌及肠球菌耐药性比较和分析

为了解2020年浙江省金华市和台州市动物源细菌耐药情况,于2020年5月分别从这2市7个畜禽养殖场随机采集畜禽肛拭子样品284份,使用选择性培养基分离大肠埃希菌和肠球菌,通过基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF-MS)对其进行鉴定,并使用微量肉汤稀释法检测这2种细菌的最小抑菌浓度(minimal inhibitory concentration, MIC)。结果显示:金华市大肠埃希菌对四环素的耐药率最高(87.5%),其次是对磺胺异噁唑(81.2%),对黏菌素的耐药率最低(0%);台州市大肠埃希菌对磺胺异噁唑的耐药率最高(97.1%),对美罗培南和黏菌素的耐药率均为0%。金华和台州2市肠球菌对磺胺异噁唑耐药率均为100%,其次是对泰妙菌素,均为98.6%,2市未检测到对奥格门汀和万古霉素耐药的肠球菌。此外,从整体耐药率、MIC分布和耐药谱型上看,台州市的细菌耐药性水平比金华市的高。总之,通过对2个地级市的畜禽养殖中细菌耐药性水平进行监测和对比发现,2市的动物源大肠埃希菌和肠球菌耐药水平较高且存在差异。因此,通过农业主管部门的兽药减量化行动,持续监测耐药性动态变化十分必要。


关键词: 畜禽,  大肠埃希菌,  肠球菌,  耐药性,  金华市,  台州市 
Fig. 1 Identification spectra of quality control strains by MALDI-TOF-MS
Fig. 2 Comparison of antimicrobial resistance rates of E. coli isolated from Jinhua City and Taizhou CityAMP: Ampicillin; A/C: Amoxicillin/clavulanate; GEM: Gentamicin; SPT: Spectinomycin; TET: Tetracycline; FFC: Florfenicol; SF: Sulfisoxazole; SXT: Trimethoprim/sulfamethoxazole; CEF: Ceftiofur; CAZ: Ceftazidime; ENR: Enrofloxacin; OFL: Ofloxacin; MEM: Meropenem; CL: Colistin.
Fig. 3 MIC distributions of 16 antibiotics to E. coli isolated from Jinhua City and Taizhou CityAMP: Ampicillin; A/C: Amoxicillin/clavulanate; GEM: Gentamicin; SPT: Spectinomycin; TET: Tetracycline; FFC: Florfenicol; SF: Sulfisoxazole; SXT: Trimethoprim/sulfamethoxazole; CEF: Ceftiofur; CAZ: Ceftazidime; ENR: Enrofloxacin; OFL: Ofloxacin; MEM: Meropenem; APR: Apramycin; CL: Colistin; MEQ: Mequindox.
Fig. 4 Comparison of antimicrobial resistance rates of Enterococcus isolated from Jinhua City and Taizhou CityPEN:Ampicillin; A/C: Amoxicillin/clavulanate; ERY: Erythromycin; ENR: Enrofloxacin; SF: Sulfisoxazole; VAN: Vancomycin; DOX: Doxycycline; FFC: Florfenicol; TIA: Tiamulin; TIL: Tilmicosin; LZD: Linezolid.
Fig. 5 MIC distributions of 27 antibioticsfor Enterococcus isolated from Jinhua City and Taizhou CityPEN: Penicillin; A/C: Amoxicillin/clavulanate; ERY: Erythromycin; CLI: Clindamycin; ENR: Enrofloxacin; OFL: Ofloxacin; CEF: Ceftiofur; CFX: Cefoxitin; SF: Sulfisoxazole; OXA: Oxacillin; VAN: Vancomycin; SXT: Trimethoprim/sulfamethoxazole; DOX: Doxycycline; FFC: Florfenicol; TIA: Tiamulin; TIL: Tilmicosin; GEM: Gentamicin; LZD: Linezolid; BAC: Bacitracin; TET: Tetracycline; KIT: Kitasamycin; FLA: Flavomycin; EDC: Enramycin; QCT: Quinocetone; NOS: Nosiheptide; AVI: Avilamycin; VGM: Virginiamycin.
 
序号 Identifier耐药谱 Antimicrobial resistance pattern个数 Number百分比 Percent/%
1AMP-SPT-TET-FFC-SF-SXT2316.0
2AMP-TET-SF-SXT117.6
3106.9
4AMP-GEM-SPT-TET-FFC-SF-SXT85.6
5SPT-TET74.9
6SPT-TET-SF-SXT74.9
7AMP-SPT-TET-SF-SXT64.2
8AMP-TET-FFC-SF64.2
9AMP-GEM-SPT-TET-FFC-SF-SXT-ENR-OFL53.5
10TET-SF-SXT53.5
11AMP-SPT-TET-FFC-SF-SXT-ENR42.8
12AMP-TET-FFC-SF-SXT42.8
13TET-FFC-SF-SXT42.8
14AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-CEF-CAZ-MEM32.1
15AMP-GEM-TET-FFC-SF-SXT32.1
16AMP-TET-FFC-SF-CEF32.1
17TET-FFC-SF32.1
18AMP-A/C-TET-SF-SXT21.4
19AMP-GEM-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL21.4
20AMP-SPT-TET-FFC-SF-SXT-ENR-OFL21.4
21AMP-SPT-TET-FFC-SXT21.4
22TET21.4
23A/C-TET-FFC-SF-SXT-CEF-ENR-OFL10.7
24AMP-A/C-GEM-FFC-SF-SXT-ENR-MEM10.7
25AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-ENR-OFL10.7
26AMP-A/C-GEM-TET-FFC-SF-SXT-ENR10.7
27AMP-GEM-FFC-SF-SXT-ENR10.7
28AMP-GEM-SPT-TET-FFC-SF-SXT-CEF10.7
29AMP-GEM-TET-FFC-SF-SXT-ENR10.7
30AMP-GEM-TET-FFC-SF-SXT-ENR-OFL10.7
31AMP-SPT-TET-FFC10.7
32AMP-TET-CEF10.7
33AMP-TET-FFC10.7
34AMP-TET-SF-CEF10.7
35SF10.7
36SPT10.7
37SPT-SF10.7
38SPT-TET-SF10.7
39SPT-TET-SXT10.7
40TET-FFC10.7
41TET-SF10.7
 
序号 Identifier耐药谱 Antimicrobial resistance pattern个数 Number百分比 Percent/%
1AMP-SPT-TET-FFC-SF-SXT3323.6
2SF107.1
3AMP-SPT-TET-FFC-SF-SXT-ENR-OFL96.4
4AMP-GEM-SPT-TET-FFC-SF-SXT64.3
5AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-ENR-OFL53.6
6AMP-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL53.6
7AMP-TET-FFC-SF-SXT53.6
8TET-SF-SXT53.6
9AMP-GEM-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL42.9
10AMP-GEM-TET-FFC-SF-ENR-OFL42.9
11TET-SF42.9
12AMP-CEF32.1
13AMP-GEM-SPT-TET-FFC-SF-SXT-ENR-OFL32.1
14AMP-SPT-TET-FFC-SF32.1
15AMP-SPT-TET-FFC-SF-SXT-ENR32.1
16AMP-GEM-SPT-TET-FFC-SF-SXT-ENR21.4
17AMP-GEM-SPT-TET-SF-SXT-ENR-OFL21.4
18AMP-GEM-TET-FFC-SF-SXT-CEF-CAZ21.4
19AMP-SPT-TET-FFC-SF-SXT-CEF21.4
20AMP-TET-FFC-SF-SXT-ENR-OFL21.4
21SPT-TET-FFC-SF-SXT21.4
22TET-FFC-SF-SXT21.4
23AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-CAZ-ENR-OFL10.7
24AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL10.7
25AMP-A/C-GEM-SPT-TET-FFC-SF-SXT-ENR10.7
26AMP-A/C-SPT-TET-FFC-SF-SXT10.7
27AMP-GEM-FFC-SF-SXT10.7
28AMP-GEM-FFC-SF-SXT-CEF-CAZ10.7
29AMP-GEM-SPT-FFC-SF-SXT-ENR-OFL10.7
30AMP-GEM-SPT-TET-FFC-SF-SXT-CEF-CAZ-ENR-OFL10.7
31AMP-GEM-TET-FFC-SF-SXT10.7
32AMP-GEM-TET-FFC-SF-SXT-CEF10.7
33AMP-GEM-TET-FFC-SF-SXT-CEF-ENR-OFL10.7
34AMP-GEM-TET-FFC-SF-SXT-ENR-OFL10.7
35AMP-SPT-FFC-SF-CEF10.7
36AMP-SPT-FFC-SF-SXT10.7
37AMP-SPT-FFC-SF-SXT-CEF10.7
38AMP-SPT-TET-FFC-SF-SXT-ENR-MEM10.7
39AMP-SPT-TET-FFC-SXT10.7
40AMP-SPT-TET-SF-SXT10.7
41AMP-TET-FFC-SF10.7
42AMP-TET-FFC-SF-CEF10.7
43AMP-TET-FFC-SF-ENR10.7
44SPT-TET-SF-SXT-ENR-OFL10.7
45TET-FFC-SF10.7
46TET-SF-SXT-ENR10.7
Table 2 Antimicrobial resistance patterns of E. coli isolated from Taizhou City

序号

Identifier

耐药谱

Antimicrobial resistance pattern

个数

Number

百分比

Percent/%

1ERY-SF-TIA-TIL4931.0
2SF-TIA-TIL1812.5
3ERY-ENR-SF-TIA-TIL-LZD1711.8
4ERY-SF-TIA-TIL-LZD139.0
5ERY-SF-DOX-TIA-TIL128.3
6

ERY-ENR-SF-DOX-TIA-

TIL-LZD

96.3
7ERY-SF-DOX-TIA-TIL-LZD96.3
8SF-DOX-TIA-TIL53.5
9ERY-ENR-SF-DOX-TIA-TIL42.8
10ERY-ENR-SF-TIA-TIL32.1
11ERY-SF-TIA21.4
12ERY-SF-TIL10.7
13ERY-SF-TIL-LZD10.7
14SF-TIA10.7
Table 3 Antimicrobial resistance patterns of Enterococcus isolated from Jinhua City

序号

Identifier

耐药谱

Antimicrobial resistance pattern

个数

Number

百分比

Percent/%

1

ERY-ENR-SF-DOX-TIA-

TIL-LZD

2719.3
2ERY-SF-DOX-TIA-TIL-LZD2719.3
3ERY-SF-DOX-TIA-TIL2618.6
4ERY-SF-TIA-TIL1611.4
5ERY-ENR-SF-TIA-TIL-LZD117.9
6ERY-SF-TIA-TIL-LZD96.4
7ERY-ENR-SF-DOX-TIA-TIL64.3
8ERY-ENR-SF-TIA-TIL32.1
9SF-TIA-TIL32.1
10ENR-SF-TIA-TIL21.4
11ERY-SF-TIA21.4
12SF21.4
13SF-TIA21.4
14ENR-SF-DOX-TIA-TIL10.7
15

PEN-ERY-ENR-SF-DOX-

TIA-TIL

10.7
16SF-DOX-TIA10.7
17SF-DOX-TIA-LZD10.7
Table 4 Antimicrobial resistance patterns of Enterococcus isolated from Taizhou City
 
 
[1]   CROXEN M A, FINLAY B B. Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 2010,8(1):26-38. DOI:10.1038/nrmicro2265
doi: 10.1038/nrmicro2265
[2]   GAO W, HOWDEN B P, STINEAR T P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Current Opinion in Microbiology, 2018,41:76-82. DOI:10.1016/j.mib.2017.11.030
doi: 10.1016/j.mib.2017.11.030
[3]   FIORE E, TYNE D VAN, GILMORE M S. Pathogenicity of Enterococci. Microbiology Spectrum, 2019,7(4):10. DOI:10.1128/microbiolspec.GPP3-0053-2018
doi: 10
[4]   KISSINGA H D, MWOMBEKI F, SAID K, et al. Antibiotic susceptibilities of indicator bacteria Escherichia coli and Enterococci spp. isolated from ducks in Morogoro Municipality, Tanzania. BMC Research Notes, 2018,11(1):87. DOI:10.1186/s13104-018-3201-4
doi: 10.1186/s13104-018-3201-4
[5]   ALM E W, ZIMBLER D, CALLAHAN E, et al. Patterns and persistence of antibiotic resistance in faecal indicator bacteria from freshwater recreational beaches. Journal of Applied Microbiology, 2014,117(1):273-285. DOI:10.1111/jam.12512
doi: 10.1111/jam.12512
[6]   MA Z, LEE S, JEONG K C. Mitigating antibiotic resistance at the livestock-environment interface: a review. Journal of Microbiology and Biotechnology, 2019,29(11):1683-1692. DOI:10.4014/jmb.1909.09030
doi: 10.4014/jmb.1909.09030
[7]   QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment. Environment International, 2018,110:160-172. DOI:10.1016/j.envint.2017.10.016
doi: 10.1016/j.envint.2017.10.016
[8]   OSMAN K M, KAPPELL A D, ELHADIDY M, et al. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: a risk to public health and food safety. Scientific Reports, 2018,8(1):5859. DOI:10.1038/s41598-018-23962-7
doi: 10.1038/s41598-018-23962-7
[9]   HAMMERUM A M, LESTER C H, HEUER O E. Antimicrobial-resistant enterococci in animals and meat: a human health hazard?Foodborne Pathogens and Disease, 2010,7(10):1137-1146. DOI:10.1089/fpd.2010.0552
doi: 10.1089/fpd.2010.0552
[10]   BELLANGER X, PAYOT S, LEBLOND-BOURGET N, et al. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiology Reviews, 2014,38(4):720-760. DOI:10.1111/1574-6976.12058
doi: 10.1111/1574-6976.12058
[11]   HEUER O E, HAMMERUM A M, COLLIGNON P, et al. Human health hazard from antimicrobial-resistant enterococci in animals and food. Clinical Infectious Diseases, 2006,43(7):911-916. DOI:10.1086/507534
doi: 10.1086/507534
[12]   张纯萍,宋立,吴辰斌,等.我国动物源细菌耐药性监测系统简介.中国动物检疫,2017,34(3):34-38. DOI:10.3969/j.issn.1005-944X.2017.03.009
ZHANG C P, SONG L, WU C B, et al. Drug resistance surveillance network for zoonotic bacteria in China. China Animal Health Inspection, 2017,34(3):34-38. (in Chinese)
doi: 10.3969/j.issn.1005-944X.2017.03.009
[13]   KOSTRZEWA M. Application of the MALDI Biotyper to clinical microbiology: progress and potential. Expert Review of Proteomics, 2018,15(3):193-202. DOI:10.1080/14789450.2018.1438193
doi: 10.1080/14789450.2018.1438193
[14]   Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: M100-S27. Wayne, PA, U.S.: CLSI, 2017. DOI:10.1128/jcm.00213-21
doi: 10.1128/jcm.00213-21
[15]   卢亚兰,代正云,陈凌云,等.两株blaNDM-5基因介导的碳青霉烯耐药禽源大肠埃希菌ST10和ST354耐药性.微生物学通报,2020,47(6):1837-1846. DOI:10.13344/j.microbiol.china.190856
LU Y L, DAI Z Y, CHEN L Y, et al. Two carbapenem-resistant avian Escherichia coli strains ST10 and ST354 mediated by blaNDM-5 gene. Microbiology China, 2020,47(6):1837-1846. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.190856
[16]   中国临床微生物质谱共识专家组.中国临床微生物质谱应用专家共识.中华医院感染学杂志,2016,26(10):2149-2152. DOI:10.1039/c5cc09775d
China Clinical Microbiology Mass Sspectrometry Consensus Expert Group. China expert consensus on clinical microor-ganism mass spectrometry application. Chinese Journal of Nosocomiology, 2016,26(10):2149-2152. (in Chinese)
doi: 10.1039/c5cc09775d
[17]   2018年中国兽用抗菌药使用情况报告.中国动物保健,2019,21(12):8-9[2021-8-16]. . DOI:10.1007/978-981-10-7983-2_3
Report on the use of veterinary antibiotics in China in2018. China Animal Health, 2019,21(12):8-9. (in Chinese)
doi: 10.1007/978-981-10-7983-2_3
[18]   ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 2015,49(11):6772-6782. DOI:10.1021/acs.est.5b00729
doi: 10.1021/acs.est.5b00729
[19]   ASLAN A T, AKOVA M. Extended spectrum β-lactamase producing enterobacteriaceae: carbapenem sparing options. Expert Review of Anti-infective Therapy, 2019,17(12):969-981. DOI:10.1080/14787210.2019.1693258
doi: 10.1080/14787210.2019.1693258
[20]   LIU Y Y, WANG Y, WALSH T R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 2016,16(2):161-168. DOI:10.1016/S1473-3099(15)00424-7
doi: 10.1016/S1473-3099(15)00424-7
[21]   WANG Y, XU C Y, ZHANG R, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. The Lancet Infectious Diseases, 2020,20(10):1161-1171. DOI:10.1016/S1473-3099(20)30149-3
doi: 10.1016/S1473-3099(20)30149-3
[22]   FANG J H, SHEN Y, QU D F, et al. Antimicrobial resistance profiles and characteristics of integrons in Escherichia coli strains isolated from a large-scale centralized swine slaughterhouse and its downstream markets in Zhejiang, China. Food Control, 2019,95:215-222. DOI:10.1016/j.foodcont.2018.08.003
doi: 10.1016/j.foodcont.2018.08.003
[1] Rongkang WU,Fanghui PAN,Jiayue CHANG,Xing ZHANG,Matthew TIBAMBA,Youbao WANG. Livestock and poultry manure pollution and its future risk forecasting on farmland in Henan Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 233-242.
[2] Yan ZHAO,Junjie JIN,Minmin REN,Fengxiang HOU,Suzhen LIU,Chengjun XUE,Yingping XIAO. Virulence genes and drug resistance characteristics of Escherichia coli in laying duck under the two different breeding modes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 254-262.
[3] PAN Hang, LI Xiaoliang, FANG Weihuan, YUE Min.
Analysis of major human and foodborne pathogens and their resistance to antimicrobials in the USA in the past two decades: Implications for surveillance and control of antimicrobial resistance in China
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 237-246.
[4] Xie Guoxiong, Wu Chongshu, Kong Zhangliang, Jiang Mingbei. Chemical forms and stabilization of phosphorus in manures from large-scale livestock and poultry farms.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 213-218.