Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2018, Vol. 44 Issue (4): 381-391    DOI: 10.3785/j.issn.1008-9209.2018.07.231
    
Recent development in automatic guidance and autonomous vehicle for agriculture: A Review
HAN Shufeng1,2,3*, HE Yong1,2, FANG Hui1,2
(1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; 2. Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; 3. John Deere Intelligent Solutions Group, Urbandale, IA50323, Iowa, USA)
Download: HTML (   PDF(2910KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Automated agricultural vehicles can help alleviate labor intensity concerns, reduce the cost of inputs, and improve the profitability. Significant progress has been made in automatic guidance for agricultural vehicles during the last two decades. More recently, research and development are focused on achieving more autonomy, with the ultimate goal to develop autonomous vehicles or field robots for agricultural operations. This paper gives a review of recent development in autonomous vehicles, including localization, navigation control, mission planning, perception and safeguarding, and implement control. Trends and future directions in autonomous vehicle development are discussed.

Key wordsautomatic guidance      autonomous vehicle      vehicle localization      vehicle navigation control      mission planning      vehicle safeguarding     
Published: 11 September 2018
CLC:  S 2  
Cite this article:

HAN Shufeng, HE Yong, FANG Hui. Recent development in automatic guidance and autonomous vehicle for agriculture: A Review. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 381-391.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.07.231     OR     http://www.zjujournals.com/agr/Y2018/V44/I4/381


农机自动导航及无人驾驶车辆的发展综述(英文)

无人驾驶的农机可以帮助减轻劳动力强度,降低投入成本并提高盈利能力。近二十几年来,农机自动导航有了重大进展。目前的研发主要集中在具有更强自主作业能力的农机装备方面,而最终目标是要发展无人驾驶车辆或田间机器人。本文综述了无人驾驶车辆领域的最新技术进展,包括定位、导航控制、作业任务规划、环境感知及安全避障、农具控制等,探讨了该领域的技术趋势与未来发展方向。

关键词: 自动导航,  无人驾驶车辆,  车辆定位,  农机导航控制,  作业规划,  农机安全避障 
[1] NI Jiadan, PAN Shizhe, DAN Fan, JIANG Yihong. Effects of tea polyphenols-chitosan complex solution on changes of quality indicators under storage in Miichthys miiuy[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 594-.
[2] XU Yimeng, ZHU Xiaowen, LIU Zhijie, HU Yaohua, GU Fang. Field simulation and structure optimization of the air conveying system in air assisted sprayer based on computer fluid dynamics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 451-458.
[3] HE Yong, WU Jianjian, FANG Hui, ZHENG Qishuai, XIAO Shupei, CEN Haiyan. Research on deposition effect of droplets based on plant protection unmanned aerial vehicle: A review[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 392-398.
[4] ZHENG Qishuai, CEN Haiyan, FANG Hui, WU Jianjian, XIAO Shupei, HE Yong. Research on wettability of spraying droplet with unmanned aerial vehicle[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 407-413.
[5] YUAN Weinan, XU Tongyu, CAO Yingli, WANG Yang, YU Fenghua. Estimation of chlorophyll content in rice canopy leaves based on main base analysis and dimensionality reduction method[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 423-430.
[6] CHEN Pengfei. Applications and trends of unmanned aerial vehicle in agriculture[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 399-406.
[7] LIU Yufei, HE Yong, NOGUCHI Noboru. Development of a collision avoidance system for agricultural airboat based on laser sensor[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 431-439.
[8] ZHANG Fangming, LI Jiaming, CHEN Jiasong. A dual-antenna global positioning system (GPS) receiver based automated leveling system for tuber harvesters of Ophiopogon japonicus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 445-450.
[9] WANG Bo, WANG Jun, DU Dongdong. Finite element analysis of dynamic impact damage process of maize kernel based on HyperMesh and LS-DYNA[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 465-475.
[10] WU Wenjie, WU Chongyou. Optimization for header parameters of rape combine harvester[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 481-489.
[11] YU Xinjie, WU Xiongfei, SHEN Weiliang. Pattern recognition method for the identification of Daiqu large yellow croaker based on computer vision#br#[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 490-498.
[12] SHEN Weizheng, QU Tengyu, WEI Xiaoli, MU Yingxin. Design and analysis of parameter optimization on development of corn straw fiber composition by ultrasound with alkalization pretreatment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 116-124.
[13] WANG Yongwei, HE Zhuoliang, CHEN Jun, WANG Jun, ZHANG Lingyue, TANG Yanhai. Optimization on structure and parameters of a collision-pneumatic hybrid rice pollination machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 98-106.
[14] YANG Yang, GUO Zonglou. Key technology design of ecological ditch and its application in modern agriculture[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 377-388.
[15] XU Pengcheng, FAN Fangyuan, LU Debiao, JIN jing, GONG Shuying1. Infusion color and taste characteristic of Dafo Longjing tea processed from different cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 317-328.