Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (3): 376-384    DOI: 10.3785/j.issn.1008-9209.2018.03.132
Animal sciences & veterinary medicine     
Identification for internal reference genes in different periods of granulosa cells of Tianfu meat geese.
Yuanliang MO(),Yushi WANG,Jiwen WANG()
College of Animal Science and Technology, Sichuan Agricultural University/Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
Download: HTML   HTML (   PDF(1963KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to screen out the most stable reference genes in different periods of granulosa cells in goose, we selected 10 candidate reference genes (GAPDH, ACTB, TUB, UBC, HMBS, SDH, 18S, 28S, TBP, HPRT1) to determine the relative expression levels by the real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). The expression stabilities of 10 candidate reference genes in nine different stages of granulosa cells were systematically analyzed by delta-C T, qbase+, NormFinder and BestKeeper, respectively. The results of RT-qPCR melting curve and PCR amplification showed that the 10 candidate reference genes were specifically amplified. By constructing a standard curve, between C q value and the logarithm of relative copy number exhibited a good linear relationship in the serial dilution concentration gradient. Based on the evaluation results of four different algorithms, SDH, HMBS and 18S were found to be three of the most stable reference genes, but UBC, GAPDH and TUB were three of the least stable reference genes in the different periods of granulosa cells. Therefore, the most stable internal reference genes were SDH and HMBS in granulosa cells at different developmental stages, and it could get more accurate normalization of RT-qPCR data by geometric averaging of the most stable reference genes.



Key wordsgeese      granulosa cell      reference gene      stability      selection     
Received: 13 March 2018      Published: 25 June 2019
CLC:  S 835  
Corresponding Authors: Jiwen WANG     E-mail: evianmoyl@foxmail.com;wjw2886166@163.com
Cite this article:

Yuanliang MO,Yushi WANG,Jiwen WANG. Identification for internal reference genes in different periods of granulosa cells of Tianfu meat geese.. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 376-384.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.03.132     OR     http://www.zjujournals.com/agr/Y2019/V45/I3/376


天府肉鹅母系不同阶段颗粒细胞内参基因的选择

为筛选出鹅卵泡不同阶段颗粒细胞稳定表达的内参基因,以产蛋期天府肉鹅母系卵泡颗粒层细胞为材料,利用实时荧光定量聚合酶链式反应(real-time fluorescence quantitative polymerase chain reaction, RT-qPCR)技术分别对GAPDHACTBTUBUBCHMBSSDH18S28STBPHPRT1等10个候选内参基因的相对表达量进行测定,采用ΔC T法、qbase+、NormFinder、BestKeeper等4种评价方法对9个不同阶段卵泡颗粒细胞的表达稳定性进行评定。RT-qPCR熔解曲线和PCR扩增显示,10个候选内参基因的引物特异性良好;通过构建标准曲线,表明各内参基因在系列稀释的浓度梯度内具有良好的线性关系;综合4种方法的评价结果,发现在不同阶段颗粒细胞中,最稳定的3个内参基因依次为SDHHMBS18S,稳定性最差的3个内参基因依次为UBCGAPDHTUB。在不同阶段颗粒细胞中最稳定的内参基因为SDHHMBS,以最稳定的2个内参基因的几何平均数作为标准化校正因子可得到更加准确的结果。


关键词: 鹅,  颗粒细胞,  内参基因,  稳定性,  选择 

基因

Gene

引物序列(5′→3′)

Primer sequence (5′→3′)

扩增长度

Amplification

size/bp

退火温度

Annealing

temperature/℃

GenBank登录号

GenBank

accession number

文献

Reference

GAPDH

F:GCTGATGCTCCCATGTTCGTGAT

R:GTGGTGCAAGAGGCATTGCTGAC

86 60 DQ821717.1 [16]
ACTB

F:CAACGAGCGGTTCAGGTGT

R:TGGAGTTGAAGGTGGTCTCG

92 59.6 M26111 [17]
TUB

F:GAGCGGAGCAGGAAACAAC

R:GCCAGTACCACCACCAAGA

151 55 NM_001080860.2 [18]
HMBS

F:GGCTGGGAGAATCGCATAGG

R:TCCTGCAGGGCAGATACCAT

131 60 XM_417846.2 [19]
HPRT1

F:GCACTATGACTCTACCGACTATTG

R:CAGTTCTGGGTTGATGAGGTT

112 60 AJ132697 [20]
UBC

F:AGGGTGGATTCTTTCTGG

R:ACTGAGTTTGGAGGGAGC

243 60 GO240773 [21]
TBP

F:ATCAAGCCAAGAATTGTTCTGC

R:CTTCGTAGATTTCTGCTCGAACT

85 60 NM_205103.1 [22]
SDH

F:ATCCATCGAGCCTTACC

R:CATAGAGTCCGTCCAGTTT

101 55 NM_001080875.1 [18]
18S

F:TTGGTGGAGCGATTTGTC

R:ATCTCGGGTGGCTGAACG

129 53.9 L21170 [17]
28S

F:ATTCCCACTGTCCCTACCTAC

R:CTCCCACTTATCCTACACCTCT

144 55 EF552792.1 [18]
Table 1 Primer information of candidate reference genes
Fig. 1 RT-qPCR melting curves of candidate reference genes
Fig. 2 PCR amplification of reference genes

基因

Gene

扩增效率

Amplification

efficiency/%

曲线斜率

Slope of curve

决定系数(R 2

Coefficient of

determination (R 2)

GAPDH 93.90 -3.478 0.991
ACTB 82.10 -3.842 0.995
TUB 97.67 -3.379 0.999
SDH 98.28 -3.364 0.999
TBP 83.30 -3.799 0.997
HMBS 104.70 -3.125 0.981
UBC 107.90 -3.146 0.993
HPRT1 91.10 -3.555 0.983
18S 108.19 -3.140 0.982
28S 108.68 -3.130 0.997
Table 2 Standard curves of candidate reference genes
Fig. 3  C q values for candidate reference genes in granulosa cell
Fig. 4 Reference gene expression stability analysis by ΔC T (A), qbase+ (B), NormFinder (C), BestKeeper (D)

内参基因

Reference genes

ΔC T qbase+ NormFinder BestKeeper

综合排名

Comprehensive ranking

SDH 1 1 1 5 1
HMBS 2 2 2 2 2
18S 4 4 4 1 3
TBP 3 3 3 4 4
ACTB 6 6 5 7 5
HPRT1 5 7 6 6 6
28S 9 8 9 3 9
TUB 7 5 7 8 7
GAPDH 8 9 8 9 8
UBC 10 10 10 10 10
Table 3 Comprehensive ranking of reference gene expression stability
Fig. 5 Determination of the optimal number of reference genes
Fig. 6 Relative expression of FSHR in different periods of granulosa cells
[1]   HIGUCHI R , DOLLINGER G , WALSH P S , et al . Simultaneous amplification and detection of specific DNA sequences. Nature Biotechnology, 1992,10:413-417.
[2]   HUGGETT J , DHEDA K , BUSTIN S , et al . Real-time RT-PCR normalisation: strategies and considerations. Genes and Immunity, 2005,6:279-284.
[3]   THELLIN O , ZORZI W , LAKAYE B , et al . Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 1999,75(2/3):291-295.
[4]   GUTIERREZ L , MAURIAT M , GUéNIN S , et al . The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 2008,6(6):609-618.
[5]   DHEDA K , HUGGETT J F , BUSTIN S A , et al . Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 2004,37(1):112-114,116,118-119.
[6]   M I-U-R KHAN , DIAS F C F , DUFORT I , et al . Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. Reproduction, Fertility and Development, 2016,28(6):795-805.
[7]   BADDELA V S , BAUFELD A , YENUGANTI V R , et al . Suitable housekeeping genes for normalization of transcript abundance analysis by real-time RT-PCR in cultured bovine granulosa cells during hypoxia and differential cell plating density. Reproductive Biology and Endocrinology, 2014,12:118.
[8]   Lü Y , ZHAO S G , LU G , et al . Identification of reference genes for qRT-PCR in granulosa cells of healthy women and polycystic ovarian syndrome patients. Scientific Reports, 2017,7(1):6961.
[9]   JOHNSON A L , LEE J . Granulosa cell responsiveness to follicle stimulating hormone during early growth of hen ovarian follicles. Poultry Science, 2015,95(1):108-114.
[10]   JOHNSON A L . Ovarian follicle selection and granulosa cell differentiation. Poultry Science, 2015,94(4):781-785.
[11]   SILVER N , BEST S , JIANG J , et al . Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 2006,7:33.
[12]   VANDESOMPELE J , PRETER K DE , PATTYN F , et al . Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 2002,3(7):research0034.1-0034.12.
[13]   ANDERSEN C L , JENSEN J L , ?RNTOFT T F . Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 2004,64(15):5245-5250.
[14]   PFAFFL M W , TICHOPAD A , PRGOMET C , et al . Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 2004,26(6):509-515.
[15]   GILBERT A B , EVANS A J , PERRY M M , et al . A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl (Gallus domesticus). Journal of Reproduction and Fertility, 1977,50(1):179-181.
[16]   KANG B , GUO J R , YANG H M , et al . Differential expression profiling of ovarian genes in prelaying and laying geese. Poultry Science, 2009,88(9):1975-1983.
[17]   WEN R , HU S Q , XIAO Q H , et al . Leptin exerts proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway. Journal of Steroid Biochemistry and Molecular Biology, 2015,149:70-79.
[18]   王忠伟 .籽鹅不同发育时期和不同组织内参基因选择的研究.黑龙江,大庆:黑龙江八一农垦大学,2011.
WANG Z W . Selection of reference genes from different development periods and tissues in Zi geese. Daqing, Heilongjiang: Heilongjiang Bayi Agricultural University, 2011. (in Chinese with English abstract)
[19]   YIN R F , LIU X X , LIU C , et al . Systematic selection of housekeeping genes for gene expression normalization in chicken embryo fibroblasts infected with Newcastle disease virus. Biochemical and Biophysical Research Communications, 2011,413(4):537-540.
[20]   NASCIMENTO C S , BARBOSA L T , BRITO C , et al . Identification of suitable reference genes for real time quantitative polymerase chain reaction assays on Pectoralis major muscle in chicken (Gallus gallus). PLoS One, 2015,10(5):e0127935.
[21]   PAN Z , WANG J , HAN C , et al . Identification of differentially expressed genes between hepatocytes of Landes geese (Anser anser) and Sichuan white geese (Anser cygnoides). Molecular Biology Reports, 2010,37(8):4059-4066.
[22]   á SIMON , JáVOR A , BAI P , et al . Reference gene selection for reverse transcription quantitative polymerase chain reaction in chicken hypothalamus under different feeding status. Journal of Animal Physiology and Animal Nutrition, 2019,102:286-296.
[23]   WANG Q , ISHIKAWA T , MICHIUE T , et al . Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper. International Journal of Legal Medicine, 2012,126(6):943-952.
[24]   WOODS D C , JOHNSON A L . Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection. Biology of Reproduction, 2005,72(3):643-650.
[25]   MCDERMENT N A , WILSON P W , WADDINGTON D , et al . Identification of novel candidate genes for follicle selection in the broiler breeder ovary. BMC Genomics, 2012,13:494.
[26]   RADONI? A , THULKE S , MACKAY I M , et al . Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 2004,313(4):856-862.
[27]   DERVEAUX S , VANDESOMPELE J , HELLEMANS J . How to do successful gene expression analysis using real-time PCR. Methods, 2010,50(4):227-230.
[28]   CHEN D L , PAN X P , XIAO P , et al . Evaluation and identification of reliable reference genes for pharmacogenomics, toxicogenomics, and small RNA expression analysis. Journal of Cellular Physiology, 2011,226(10):2469-2477.
[29]   JI H , WANG J F , LIU J X , et al . Selection of reliable reference genes for real-time qRT-PCR analysis of Zi geese (Anser anser domestica) gene expression. Asian-Australasian Journal of Animal Sciences, 2013,26(3):423-432.
[30]   袁振杰,陈秋月,姜运良,等 .不同发育时期鸡下丘脑和卵巢组织中内参基因表达稳定性分析.山东农业大学学报(自然科学版),2017,48(6):801-806.
YUAN Z J , CHEN Q Y , JIANG Y L , et al . Stability analysis of reference genes expression in chicken hypothalamus and ovary during the different developmental stages. Journal of Shandong Agricultural University (Natural Science Edition), 2017,48(6):801-806. (in Chinese with English abstract)
[31]   计红,王忠伟,郭景茹,等 .产蛋前期和产蛋期籽鹅组织内参基因的稳定性.中国农业科学,2012,45(11):2260-2266.
JI H , WANG Z W , GUO J R , et al . Stability of endogenous reference genes in green-goose tissues during prelaying and laying periods. Scientia Agricultura Sinica, 2011,45(11):2260-2266. (in Chinese with English abstract)
[32]   SAMIULLAH S , ROBERTS J , WU S B . Reference gene selection for the shell gland of laying hens in response to time-points of eggshell formation and nicarbazin. PLoS One, 2017,12(7):e0180432.
[1] Fachun GUAN,Buyun BIAN,Lihua HUANG,Yongfeng Zhang,Xiaohui Li,Lichun ZHANG. Analysis on available production resources in the cropland system of agro-pastoral integration[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 221-228.
[2] Jinxin YU,Chao FANG,Jiayi ZHOU,Yuanyuan YAO,Xinnian ZENG,Jiali LIU. Influence of olfactory learning on host selection behavior in Bactrocera dorsalis (Diptera: Tephritidae)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 181-188.
[3] LIU Tian, CHEN Xiaoyu, ZHU Zhiwei, YU Fuxian, HUANG Jing, JIA Ruoxin, SHI Fangxiong, PAN Jianzhi. Screening of follicle-stimulating hormone dose-dependent expression genes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 162-171.
[4] CAO Yujie, WU Xingfu, XIAO Bingguang, XU Haiming. Environmental stability of economic characteristics of Fen-flavor tobacco[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 340-349.
[5] CHEN Tingting, LI Xianfu, JIA Chunlei, AN Xueqin, ZHU Jun, XIAO Lizeng, DAI Xiumei, ZHANG Jiankui. Characteristics of new flue-cured tobacco strains developed from Yunyan87 mutants and their DNA fingerprint identification.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 179-189.
[6] Zheng Nenzhu, Li Li, Xin Qingwu, Miao Zhongwei, Zhu Zhiming, Liu Fenghui, Wu Jianfei, Lu Lizhi. Influence of reference genes on expression of TYR, MITF and ASIP genes in tissues of Silky Fowl.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 732-740.
[7] Zhuang Yuanhong, Liu Jingna, Huang Jiafu, Lin Jiaofen, Pan Yutian . Stability and antibacterial activity of complex gel with edible chitosan and carbomer.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 147-152.
[8] SHA Zhipeng, GUAN Fachun*, WANG Junfeng, TIAN Feipeng. Emergy evaluation on production pattern of raising geese in corn field[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(6): 655-662.
[9] ZHANG Mingkui, GU Guoping, WANG Yang. Degradation characteristic of different biochar materials in soil environments.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 329-335.
[10] WU Jing chao,OUYANG Wu qing,RUI Xian,LIU Mei xue,SONG Bing,LAN Ying. Preparation of mequindox microemulsion and its transdermal permeability in vitro.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 147-152.
[11] ZHANG Wei,GUO Qin,RUAN Hui,HE Guo qing. Construction of an inducible expression vector based on αgalactosidase gene as a selection marker forSaccharomyces cerevisiae and its application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 43-47.
[12] LI Jun-liang,WANG Cong-qing. Application of quantum-inspired evolutionary algorithm in the analysis of near infrared diffuse transmission spectroscopy of apples .[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 453-459.
[13] NI Xi-yuan,XU Xiao-dong,HUANG Ji-xiang,CHEN Fei,ZHOU Wei-jun,ZHAO Jian-yi. Marker‐assisted selection for temporary maintainers of a recessive epistemic genic male sterility in Brassica napus L[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 407-412.
[14] . Developing indicamaintainer lines with intermediate amylose content by Wx functional microsatellite marker in rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(6): 602-608.