Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (2): 251-260    DOI: 10.3785/j.issn.1008-9209.2020.05.190
动物科学与动物医学     
兔支气管败血波氏杆菌外膜囊泡的制备及其蛋白质成分分析
南黎1(),黄叶娥2,肖琛闻2,王志鹏2,韦强2,季权安2,李科2,刘燕2(),鲍国连2()
1.浙江师范大学化学与生命科学学院,浙江 金华 321000
2.浙江省农业科学院畜牧兽医研究所,杭州 310021
Preparation of outer membrane vesicles from rabbit Bordetella bronchiseptica and their protein composition analysis
Li NAN1(),Ye’e HUANG2,Chenwen XIAO2,Zhipeng WANG2,Qiang WEI2,Quan’an JI2,Ke LI2,Yan LIU2(),Guolian BAO2()
1.College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
2.Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
 全文: PDF(1991 KB)   HTML
摘要:

本研究旨在确立兔波氏杆菌外膜囊泡(outer membrane vesicles, OMVs)最佳制备工艺。以兔波氏杆菌毒力较强菌株FX-1为研究对象,筛选出制备OMVs的最优方法,并对培养时间、抗生素添加量及过滤方法进行逐一优化。采用透射电镜(transmission electron microscope, TEM)、扫描电镜(scanning electron microscope, SEM)、纳米颗粒追踪分析(nanoparticle tracking analysis, NTA)等方法分析OMVs的理化性质;采用考马斯亮蓝法(Bradford法)、十二烷基硫酸钠聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)及液相色谱-串联质谱法(liquid chromatography-tandem mass spectrometry, LC-MS/MS)检测OMVs的蛋白质含量及组分。试验结果显示,超滤浓缩法是制备兔波氏杆菌OMVs的较适方法,采用该方法的最佳培养时间、头孢氨苄质量浓度和过滤方法分别为18 h、64 μg/mL和0.45 μm滤膜过滤一次。制得的OMVs呈纳米级球形囊泡,平均直径为127.83 nm±0.68 nm。蛋白质分析结果表明,OMVs上包含多种与兔波氏杆菌毒力和感染机制有关的蛋白质。该制备工艺能够显著提高兔波氏杆菌OMVs的产量,为其工业化生产提供了可能;对其结构和蛋白质成分的分析,为研发新型亚单位疫苗提供了科学依据。

关键词: 细菌外膜囊泡支气管败血波氏杆菌制备工艺蛋白质成分分析    
Abstract:

This study aimed to establish the optimal preparation method of outer membrane vesicles (OMVs) from rabbit Bordetella bronchiseptica (Bb). The FX-1 strain of rabbit Bb was used as the research object. Centrifugal ultrafiltration and ultrasonication were compared, and followed by the optimization of the preparation technics, such as culture time, antibiotic addition and filtering method. The physical and chemical properties of OMVs were examined with transmission electron microscope (TEM), scanning electron microscope (SEM) and nanoparticle tracking analysis (NTA), etc. The protein compositions were analysed with Bradford protein quantification, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that centrifugal ultrafiltration was a better preparation method of OMVs, and the optimum culture time, cefalexin concentration and filtering method were 18 h, 64 μg/mL and filtration though 0.45 μm membrane once, respectively. The OMVs showed a spherical shape with the diameter of 127.83 nm±0.68 nm, containing a range of proteins associated with virulence and infection mechanisms. This preparation technique could significantly promote the production of OMVs, which making industrial production possible. Furthermore, analysis of the protein composition lays a foundation for novel subunit vaccine research and development.

Key words: bacterial outer membrane vesicles    Bordetella bronchiseptica    preparation technic    protein composition analysis
收稿日期: 2020-05-19 出版日期: 2021-04-25
CLC:  S 85  
基金资助: 国家兔产业技术体系岗位科学家项目(CARS-43-C-2);浙江省基础公益研究农业农村项目(LGN20C180003);浙江省农业科学院青年人才培养项目(2018R22R08E02)
通讯作者: 刘燕,鲍国连     E-mail: nanlio@163.com;35792191@qq.com;baoguolian@163.com
作者简介: 南黎(https://orcid.org/0000-0002-5809-2417),E-mail:nanlio@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
南黎
黄叶娥
肖琛闻
王志鹏
韦强
季权安
李科
刘燕
鲍国连

引用本文:

南黎,黄叶娥,肖琛闻,王志鹏,韦强,季权安,李科,刘燕,鲍国连. 兔支气管败血波氏杆菌外膜囊泡的制备及其蛋白质成分分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 251-260.

Li NAN,Ye’e HUANG,Chenwen XIAO,Zhipeng WANG,Qiang WEI,Quan’an JI,Ke LI,Yan LIU,Guolian BAO. Preparation of outer membrane vesicles from rabbit Bordetella bronchiseptica and their protein composition analysis. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 251-260.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.05.190        http://www.zjujournals.com/agr/CN/Y2021/V47/I2/251

图1  OMVs最优制备工艺的建立*表示在P<0.05水平差异有统计学意义;**表示在P<0.01水平差异有高度统计学意义。
图2  超滤浓缩法制OMVs的TEM、SEM和NTA观察结果A. OMVs的TEM观察结果;B. OMVs的SEM观察结果。
图3  SDS-PAGE分析超滤浓缩法和超声破碎法制得的OMVs蛋白条带1:分子标志物;2:超滤浓缩法;3:超声破碎法。

登录号

Accession No.

肽段质谱

匹配总数

Number of PSMs

蛋白质名称

Protein name

分子质量

Molecular mass/kDa

理论等电点

Calculated isoelectric point

A0A0H3LWR4746丝状血凝素/黏附素 Filamentous hemagglutinin/adhesin372.38.06
A0A0C6NZD9634黏附素 Adhesin328.58.59
A0A5A4M9X1602丝状血凝素 Filamentous hemagglutinin328.28.59
A0A5A4MAC4602丝状血凝素 Filamentous hemagglutinin381.48.54
A0A0H3LLW0599黏附素 Adhesin328.48.54
A0A4U9R3V8577丝状血凝素 Filamentous hemagglutinin328.58.46
A0A3T0NYS5438丝状血凝素 Filamentous hemagglutinin385.48.66
A0A5A4MEU4192

β桶域的反向自主转运蛋白

Inverse autotransporter β-barrel domain-containing protein

164.55.74
A0A0R4J8N5188

假定外膜配体结合蛋白

Putative outer membrane ligand binding protein

164.65.71
A0A5A4M5C5137

β桶域的自主转运外膜蛋白

Autotransporter outer membrane β-barrel domain-containing

protein

54.37.69
A0A5A4MM068660 kDa伴侣蛋白 60 kDa chaperonin57.45.24
A0A088B3B082鞭毛蛋白(片段) Flagellin (fragment)36.14.68
A0A0H3LML578鞭毛钩相关蛋白2 Flagellar hook-associated protein 247.75.00
A0A5A4M89069鞭毛蛋白(片段) Flagellin (fragment)40.24.75
A0A4U9RWQ966侵袭素 Invasin102.09.67
A0A4U9RYS560侵袭素 Invasin195.75.41
A0A0H3LIE045自主转运蛋白 Autotransporter237.59.39
A0A4U9RS6043绒毛蛋白 Fluffing protein228.39.39
A0A0H3LQ5936

N-乙酰胞壁-L-丙氨酸酰胺酶

N-acetylmuramoyl-L-alanine amidase

45.58.88
A0A3T0P40135Toll-Pal系统蛋白 Tol-Pal system protein47.19.47
A0A0C6PAD9、A0A4U9S6B533

DNA导向RNA聚合酶亚单位

DNA-directed RNA polymerase subunit

156.26.83
A0A3T0NU0233

β桶域的自主转运外膜蛋白

Autotransporter outer membrane β-barrel domain-containing

protein

228.69.44
A0A0C6P9X8、A0A0H3LH4332

类枯草杆菌自主转运蛋白酶

Autotransporter subtilisin-like protease

99.49.63
A0A0H3LSC331二氢硫辛酸脱氢酶 Dihydrolipoyl dehydrogenase50.16.80
A0A0H3LU4930

2-氧戊二酸脱氢酶E1组分

2-oxoglutarate dehydrogenase E1 component

106.46.30
A0A0H3LXY6、A0A3T0P20628外膜蛋白A Outer membrane protein A21.08.73
A0A0C6P3B027溶血素激活蛋白 Hemolysin activator-like protein64.69.58
Q7WHP32430S核糖体蛋白S21 30S ribosomal protein S218.510.98
A0A0C6P01923周质硝酸盐还原酶 Periplasmic nitrate reductase92.98.12
A0A0H3LJ9422假定的TonB受体 Putative TonB-dependent receptor79.37.25
表1  超滤浓缩法制得的兔波氏杆菌OMVs主要蛋白质鉴定
图4  基于基因本体论(GO)的兔波氏杆菌OMVs蛋白的功能注释和富集分析A. 生物学过程;B. 分子功能;C. 细胞成分。
1 CHAMBERS J K, MATSUMOTO I, SHIBAHARA T, et al. An outbreak of fatal Bordetella bronchiseptica bronchopneumonia in puppies. Journal of Comparative Pathology, 2019,167:41-45. DOI:10.1016/j.jcpa.2018.12.002
doi: 10.1016/j.jcpa.2018.12.002
2 YACOUB A T, KATAYAMA M, TRAN J, et al. Bordetella Bronchiseptica in the immunosuppressed population: a case series and review. Mediterranean Journal of Hematology and Infectious Diseases, 2014,6(1):e2014031. DOI:10.4084/MJHID.2014.031
doi: 10.4084/MJHID.2014.031
3 ELLIS J A. How well do vaccines for Bordetella bronchiseptica work in dogs?A critical review of the literature1977—2014. The Veterinary Journal, 2015,204(1):5-16. DOI:10.1016/j.tvjl.2015.02.006
doi: 10.1016/j.tvjl.2015.02.006
4 ROIER S, ZINGL F G, CAKAR F, et al. Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications. Microbial Cell, 2016,3(6):257-259. DOI:10.15698/mic2016.06.508
doi: 10.15698/mic2016.06.508
5 ADRIANI R, MOUSAVI G S L, NAZARIAN S, et al. Immunogenicity of Vibrio cholerae outer membrane vesicles secreted at various environmental conditions. Vaccine, 2018,36(2):322-330. DOI:10.1016/j.vaccine.2017.09.00
doi: 10.1016/j.vaccine.2017.09.00
6 FERNANDEZ-ROJAS M A, VACA S, REYES-LOPEZ M, et al. Outer membrane vesicles of Pasteurella multocida contain virulence factors. Microbiology Open, 2014,3(5):711-717. DOI:10.1002/mbo3.201
doi: 10.1002/mbo3.201
7 BERLEMAN J E, ALLEN S, DANIELEWICZ M A, et al. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Frontiers in Microbiology, 2014,5:474. DOI:10.3389/fmicb.2014.00474
doi: 10.3389/fmicb.2014.00474
8 FLEETWOOD A J, LEE M K S, SINGLETON W, et al. Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles. Frontiers in Celluar and Infection Microbiology, 2017,7:351. DOI:10.3389/fcimb.2017.00351
doi: 10.3389/fcimb.2017.00351
9 ZARIRI A, BESKERS J, DE WATERBEEMD B VAN, et al. Meningococcal outer membrane vesicle composition-dependent activation of the innate immune response. Infection and Immunity, 2016,84(10):3024-3033. DOI:10.1128/IAI.00635-16
doi: 10.1128/IAI.00635-16
10 CAI W, KESAVAN D K,WAN J, et al. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagnostic Pathology, 2018,13(1):95. DOI:10.1186/s13000-018-0768-y
doi: 10.1186/s13000-018-0768-y
11 LEITNER D R, LICHTENEGGER S, TEMEL P, et al. A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Frontiers in Microbiology, 2015,6:823. DOI:10.3389/fmicb.2015.00823
doi: 10.3389/fmicb.2015.00823
12 ACEVEDO R, FERNáNDEZ S, ZAYAS C, et al. Bacterial outer membrane vesicles and vaccine applications. Frontiers in Immunology, 2014,5:121. DOI:10.3389/fimmu.2014.00121
doi: 10.3389/fimmu.2014.00121
13 ROSENTHAL J A, CHEN L, BAKER J L, et al. Pathogen like particles: biomimetic vaccine carriers engineered at the nanoscale. Current Opinion in Biotechnology, 2014,28(8):51-58. DOI:10.1016/j.copbio.2013.11.005
doi: 10.1016/j.copbio.2013.11.005
14 ROIER S, FENNINGER J C, LEITNER D R, et al. Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles. International Journal of Medical Microbiology, 2013,303(5):247-256. DOI:10.1016/j.ijmm.2013.05.001
doi: 10.1016/j.ijmm.2013.05.001
15 ROIER S, LEITNER D R, IWASHKIW J, et al. Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLoS ONE, 2012,7(8):e42664. DOI:10.1371/journal.pone.0042664
doi: 10.1371/journal.pone.0042664
16 KLIMENTOVá J, STULíK J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiological Research, 2015,170:1-9. DOI:10.1016/j.micres.2014.09.006
doi: 10.1016/j.micres.2014.09.006
17 GERRITZEN M J H, STANGOWEZ L, DE WATERBEEMD B VAN, et al. Continuous production of Neisseria meningitidis outer membrane vesicles. Applied Microbiology Biotechnology, 2019,103(23/24):9401-9410. DOI:10.1007/s00253-019-10163-z
doi: 10.1007/s00253-019-10163-z
18 DEVIENNE K F, RADDI M S G. Screening for antimicrobial activity of natural products using a microplate photometer. Brazilian Journal of Microbiology, 2002,33(2):166-168. DOI:10.1590/S1517-83822002000200014
doi: 10.1590/S1517-83822002000200014
19 ALVES N J, TURNER K B, MEDINTZ I L, et al. Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles. Therapeutic Delivery, 2015,6(7):873-887. DOI:10.4155/tde.15.40
doi: 10.4155/tde.15.40
20 GU L, MENG R, TANG Y T, et al. Toll-like receptor 4 signaling licenses the cytosolic transport of lipopolysaccharide from bacterial outer membrane vesicles. Shock, 2019,51(2):256-265. DOI:10.1097/SHK.0000000000001129
doi: 10.1097/SHK.0000000000001129
21 FINGERMANN M, AVILA L, DE MARCO M B, et al. OMV-based vaccine formulations against Shiga toxin producing Escherichia coli strains are both protective in mice and immunogenic in calves. Human Vaccines and Immunotherapeutics, 2018,14(9):2208-2213. DOI:10.1080/21645515.2018.1490381
doi: 10.1080/21645515.2018.1490381
22 ORMAZáBAL M, BARTEL E, GAILLARD M E, et al. Characterization of the key antigenic components of pertussis vaccine based on outer membrane vesicles. Vaccine, 2014,32(46):6084-6090. DOI:10.1016/j.vaccine.2014.08.084
doi: 10.1016/j.vaccine.2014.08.084
23 KIM O Y, PARK H T, DINH N T H, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nature Communications, 2017,8(1):626. DOI:10.1038/s41467-017-00729-8
doi: 10.1038/s41467-017-00729-8
24 LIU J, HSIEH C L, GELINCIK O, et al. Proteomic characterization of outer membrane vesicles from gut mucosa-derived fusobacterium nucleatum. Journal of Proteomics, 2019,195:125-137. DOI:10.1016/j.jprot.2018.12.029
doi: 10.1016/j.jprot.2018.12.029
25 GUJRATI V, KIM S, KIM S H, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano, 2014,8(2):1525-1537. DOI:10.1021/nn405724x
doi: 10.1021/nn405724x
26 MATTOO S, CHERRY J D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clinical Microbiology Reviews, 2005,18(2):326-382. DOI:10.1128/CMR.18.2.326-382.2005
doi: 10.1128/CMR.18.2.326-382.2005
27 YOON H, ANSONG C, ADKINS J N, et al. Discovery of Salmonella virulence factors translocated via outer membrane vesicles to murine macrophages. Infection and Immunity, 2011,79(6):2182-2192. DOI:10.1128/CMR.18.2.326-382.2005
doi: 10.1128/CMR.18.2.326-382.2005
28 BOTTERO D, ZURITA M E, GAILLARD M E, et al. Membrane vesicles derived from Bordetella bronchiseptica: active constituent of a new vaccine against infections caused by this pathogen. Applied and Environmental Microbiology, 2018,84(4):e01877-17. DOI:10.1128/AEM.01877-17
doi: 10.1128/AEM.01877-17
29 LóPEZ-BOADO Y S, COBB L M, DEORA R. Bordetella bronchiseptica flagellin is a proinflammatory determinant for airway epithelial cells. Infection and Immunity, 2005,73(11):7525-7534. DOI:10.1128/IAI.73.11.7525-7534.2005
doi: 10.1128/IAI.73.11.7525-7534.2005
30 LIU Y, CHEN H, WEI Q, et al. Immune efficacy of five novel recombinant Bordetella bronchiseptica proteins. BMC Veterinary Research, 2015,11:173. DOI:10.1186/s12917-015-0488-4
doi: 10.1186/s12917-015-0488-4
31 ASENSIO C J, GAILLARD M E, MORENO G, et al. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine, 2011,29(8):1649-1656. DOI:10.1016/
j.vaccine.2010.12.068
doi: 10.1016/
[1] 贡嘎,王一飞,格桑卓玛,索朗斯珠,尼玛央宗,拉巴次仁. 1株藏猪源荚膜血清D型多杀性巴氏杆菌的分离鉴定及其生物学特性[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 611-617.
[2] 应易恬,杨璟,严冰璇,邵冯金,谭勋. 乳腺炎对牛奶外泌体功能的影响:基于乳腺上皮细胞的观察[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 383-390.
[3] 管若溦,刘建新. 围生期奶牛易感疾病的原因及常见病患的早期监测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 519-525.
[4] 李夏,夏文君,毛鍶超,卢舒婷,莫开昆,廖敏,周继勇,郑肖娟. 血清4型禽腺病毒浙江株的分离鉴定及其全基因组序列分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 635-646.
[5] 苗苗,徐彩煌,黄子惠,张小东,张兴,吴永平. 传染性法氏囊病病毒结构的冷冻电镜初步分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 506-511.
[6] 章乔艳, 邵冯金, 俞向前, 谭勋. 禽CD133 胞外结构域原核表达及多克隆抗体的制备[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 743-747.
[7] 李泳欣, 邹艺轩, 刘建新, 刘红云. 奶牛氧化应激及天然植物抗氧化提取物研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 549-554.
[8] 单颖, 刘子琦, 施杏芬, 李国炜, 陈聪, 罗浩, 刘亚杰, 方维焕, 李肖梁. 浙江及周边地区猪流行性腹泻病毒S基因分子特征分析[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 610-618.
[9] 覃盼,王经纬,王斌,雷喜梅,李龙,黄耀伟. 中国东部5省猪呼肠孤病毒流行病学调查与分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 631-638.
[10] 崔雨婷, 张睿, 陈正礼, 罗启慧, 祝春梅, 孙凤娇, 陈梦鹿. 大鼠自发性乳腺肿瘤中Bax、Bcl-2和Caspase-3的表达[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 119-126.
[11] 陈姗姗, 罗启慧, 曾文, 程安春, 刘文涛, 史良琴, 陈正礼. Ⅱ型糖尿病猕猴部分靶器官中Th1/Th2型细胞因子表达分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 302-308.
[12] 葛延松, 曹嫦妤, 王丽丽, 李楠, 江秀清, 李金龙*. 鸡硒蛋白T的硒代半胱氨酸插入序列元件、蛋白结构与功能及组织表达差异[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 9-15.
[13] 张绍志1, 施铭耀1, 陈光明1, 吕芳2, 卢宇2*. 疫苗的泡沫冷冻干燥研究[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 351-354.
[14] 唐秀莹1, 陈正礼1,2,3*, 罗启慧2,3, 张小龙1. 大豆异黄酮对大鼠肠道上皮内淋巴细胞、杯状细胞及瘦素长型受体的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 343-350.