Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (5): 519-528    DOI: 10.3785/j.issn.1008-9209.2020.01.171
综述     
瘤胃内甲烷生成与厌氧氧化过程耦联研究进展
徐欣欣(),王佳堃()
浙江大学动物科学学院奶业科学研究所,杭州 310058
Research progress on coupling of methanogenesis and anaerobic methane oxidation in the rumen
Xinxin XU(),Jiakun WANG()
Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1290 KB)   HTML
摘要:

降低反刍动物甲烷排放具有重要的经济价值和生态意义。甲烷厌氧氧化(anaerobic methane oxidation, AMO)是湿地、海洋以及湖泊等生态系统中减少甲烷排放的重要途径。根据反应过程中电子受体的不同,AMO分为硫酸盐依赖型甲烷厌氧氧化(sulfate-dependent anaerobic methane oxidation, S-DAMO)、硝酸盐/亚硝酸盐依赖型甲烷厌氧氧化(nitrate/nitrite-dependent anaerobic methane oxidation, N-DAMO)和金属依赖型甲烷厌氧氧化(metal-dependent anaerobic oxidation of methane, M-DAMO)。饲喂反刍动物硝酸盐和硫酸盐也有降甲烷的效果,但这一过程一直被认为是NO3SO42作为电子受体竞争氢的结果。而N-DAMO和S-DAMO的热动力学反应优于硝酸盐和硫酸盐还原反应,若反刍动物瘤胃中能实现AMO,对改善环境及提高饲料利用效率都具有重要意义。为此,本文在阐述AMO类型、反应机制及其涉及的微生物的基础上,比较了自然环境和反刍动物瘤胃中硝酸盐和硫酸盐对甲烷产量影响的差异,发现AMO可能在瘤胃中发生,是硝酸盐、硫酸盐降低瘤胃甲烷产量的原因之一。

关键词: 瘤胃甲烷生成甲烷厌氧氧化耦联    
Abstract:

Reducing methane emission from ruminants has important economic value and ecological significance. Anaerobic methane oxidation (AMO) is an important way to reduce methane emissions in different ecosystems, including wetlands, marine habitats and lakes. According to different electron acceptors, AMO can be divided into sulfate-dependent anaerobic methane oxidation (S-DAMO), nitrate/nitrite-dependent anaerobic methane oxidation (N-DAMO) and metal-dependent anaerobic methane oxidation (M-DAMO). Feeding nitrate and sulfate to ruminants also has methane-lowering effects; however, this process has always been thought to be the result of NO3 or SO42 competition for hydrogen as the electron acceptor. The thermodynamic reactions of N-DAMO and S-DAMO are superior to nitrate reduction reaction and sulfate reduction reaction, and if AMO can proceed in rumen, it will be of great significance to improve environment and feed utilization efficiency. Therefore, based on the description of the type of AMO, mechanisms of AMO and microorganisms involved, this paper compared the differences of nitrate and sulfate reducing methane production in the natural habitat and rumen, and found that AMO may occur in the rumen, which may be one of the reasons for the reduction of methane production in the rumen by nitrate and sulfate.

Key words: rumen    methanogenesis    anaerobic methane oxidation    coupling
收稿日期: 2020-01-17 出版日期: 2020-11-19
CLC:  X 172  
基金资助: 国家自然科学基金(31973000)
通讯作者: 王佳堃     E-mail: xuxinxin2299@163.com;jiakunwang@zju.edu.cn
作者简介: 徐欣欣(https://orcid.org/0000-0003-2829-6790),E-mail:xuxinxin2299@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐欣欣
王佳堃

引用本文:

徐欣欣,王佳堃. 瘤胃内甲烷生成与厌氧氧化过程耦联研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 519-528.

Xinxin XU,Jiakun WANG. Research progress on coupling of methanogenesis and anaerobic methane oxidation in the rumen. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 519-528.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.01.171        http://www.zjujournals.com/agr/CN/Y2020/V46/I5/519

类型

Type

生境

Habitat

实测或推测的甲烷氧化速率

Measured or estimated

methane oxidation rate

文献

Reference

硫酸盐依赖型甲烷厌氧氧化

Sulfate-dependent anaerobic methane oxidation (S-DAMO)

废水污泥

Digested sludge

1.0 mmol/(g?d)[13]

海洋沉积物

Marine sediment

52 μmol/(cm3?a)[14]

硝酸盐/亚硝酸盐依赖型甲烷厌氧氧化

Nitrate/nitrite-dependent anaerobic methane oxidation (N-DAMO)

湿地土壤

wetland soil

0.51 g/(m2?a)[15]

河道沉积物

Lake sediment

140 μmol/(g?h)[16]

金属依赖型甲烷厌氧氧化

Metal-dependent anaerobic methane oxidation (M-DAMO)

河道沉积物

Lake sediment (Fe)

1.82 mmol/(m2?d)[17]

海洋沉积物

Marine sediment (Fe)

6 μmol/(cm3?a)[14]

海洋沉积物

Marine sediment (Mn)

14 μmol/(cm3?a)[14]

沿海沉积物

Coastal sediment (Fe)

1.32 μmol/(cm3?a)[18]
表1  不同类型甲烷厌氧氧化途径中甲烷氧化速率
图1  硝酸盐或亚硝酸盐竞争氢气、氢营养型甲烷生成途径及反向产甲烷途径[21,30,38-39]黄色线条表示NO3-或NO2-竞争氢气的过程;蓝色线条表示氢营养型甲烷生成途径;红色线条表示反向产甲烷过程。Fmd:甲酰甲烷呋喃脱氢酶;Ftr:甲酰甲烷呋喃甲酰转移酶;Mch:亚甲基四氢甲烷蝶呤水解酶;Mtd:亚甲基四氢甲烷蝶呤脱氢酶;Mer:亚甲基四氢甲烷蝶呤还原酶;Mtr:甲基辅酶M转移酶;Hdr:膜相关的辅酶B-辅酶M异硫化物还原酶;Mcr:甲基辅酶M还原酶。

反应名称

Reaction name

反应方程式

Reaction equation

底物ΔG

Substrate ΔG/(kJ/mol)

甲烷生成 MethanogenesisCO2+4H2→CH4+2H2O-16.9
同型产乙酸 Homoacetogenesis2CO2+4H2→CH3COOH+2H2O-2.2
硫酸盐还原 Sulfate reductionSO42+4H2HHS+4H2O-21.1
硝酸盐还原 Nitrate reductionNO3+H2NO2+H2O-130.0
亚硝酸盐还原 Nitrite reductionNO2+3H22HNH4+2H2O-124.0
S-DAMOCH4SO42→HCO3HS+H2O-16.6
N-DAMO (NO3)5CH4+8NO38H→5CO2+4N2+14H2O-765.0
N-DAMO (NO2)3CH4+8NO28H→3CO2+4N2+10H2O-928.0
M-DAMO (Mn4)CH4+4MnO27H→HCO34Mn2+5H2O-556.0
M-DAMO (Fe3)CH48Fe3+2H2O→CO28Fe28H-454.6
表2  利用不同电子受体进行的还原或氧化反应的吉布斯自由能[11,14,48,50]

添加物

Additive

添加剂量和形式

Dose and form

降甲烷效果

Effect of reducing methane

文献

Reference

NO32.6% 5Ca(NO3)2?NH4NO3?10H2O-32%[10]
2.1% 5Ca(NO3)2?NH4NO3?10H2O-16%[52]
2.15% 5Ca(NO3)2?NH4NO3?10H2O-1.9 g/kg DMI[56]
0.53% 5Ca(NO3)2?NH4NO3?10H2O-6%[57]
1.36% 5Ca(NO3)2?NH4NO3?10H2O-13%[57]
2.11% 5Ca(NO3)2?NH4NO3?10H2O-23%[57]
5 mmol/L NO3-6.8 mL[51]
2% NaNO3-9.38 mL[58]
4% KNO3-23%或6.9 L/d[59]
SO422.6% MgSO4-16%[10]
0.93% CaSO4-19.6 L/kg DMI[60]
表3  添加硝酸盐或硫酸盐降低瘤胃甲烷产量的研究

项目

Item

生境

Habitat

说明

Description

机制

Mechanism

自然环境

Natural habitat

微生物通过不同类型的AMO降低甲烷产量

Microorganisms reduce methane production through different types of AMO

瘤胃

Rumen

微生物与产甲烷菌通过竞争氢气来降低甲烷产量

Microorganisms reduce methane production through competing hydrogen with methanogens

微生物

Microorganism

自然环境

Natural habitat

主要包括硫酸盐还原菌、甲烷厌氧氧化古菌与NC10门细菌

Including mainly sulfate-reducing bacteria (SRB), anaerobic methanotrophic archaea (ANME) and NC10 bacteria

瘤胃

Rumen

硝酸盐还原菌与硫酸盐还原菌

Nitrate-reducing bacteria and sulfate-reducing bacteria

热动力学

Thermodynamics

自然环境与瘤胃

Natural habitat and rumen

N-DAMO与M-DAMO的吉布斯自由能均高于硝酸盐或硫酸盐还原反应

Gibbs free energy of N-DAMO and M-DAMO is higher than that of reduction of nitrate or

sulfate

表4  硝酸盐和硫酸盐在自然环境和瘤胃中对甲烷产量影响的差异[10-11,48,50]
1 FULLER J R, JOHNSON D E. Monensin and lasalocid effects on fermentation in vitro. Journal of Animal Science, 1981,53(6):1574-1580.
2 KOLVER E S, ASPIN P W, JARVIS G N, et al. Fumarate reduces methane production from pasture fermented in continuous culture. Proceedings of the New Zealand Society of Animal Production, 2004,64:155-159.
3 ABECIA L, TORAL P G, MARTIN-GARCIA A I, et al. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. Journal of Dairy Science, 2012,95(4):2027-2036. DOI:10.3168/jds.2011-4831
doi: 10.3168/jds.2011-4831
4 HU W L, LIU J X, YE J A, et al. Effect of tea saponin on rumen fermentation in vitro. Animal Feed Science and Technology, 2005,120(3):333-339. DOI:10.1016/j.anifeedsci.2005.02.029
doi: 10.1016/j.anifeedsci
5 SAMINATHAN M, SIEO C C, ABDULLAH N, et al. Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation. Journal of the Science of Food and Agriculture, 2015,95(13):2742-2749. DOI:10.1002/jsfa.7016
doi: 10.1002/jsfa.7016
6 GARCIA-LOPEZ P M, KUNG L, ODOM J M. In vitro inhibition of microbial methane production by 9, 10-anthraquinone. Journal of Animal Science, 1996,74(9):2276-2284. DOI:10.2527/1996.7492276x
doi: 10.2527/1996.7492276x
7 LEE S S, HSU J T, MANTOVANI H C, et al. The effect of bovicin, HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiology Letters, 2002,217(1):51-55. DOI:10.1016/S0378-1097(02)01044-3
doi: 10.1016/S0378-1097(02)01044-3
8 DOHME F, MACHMüLLER A, ESTERMANN B L, et al. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Letters in Applied Microbiology, 1999,29(3):187-192. DOI:10.1046/j.1365-2672.1999.00614.x
doi: 10.1046/j.1365-2672.1999.00614.x
9 WRIGHT A D G, KENNEDY P, O’NEILL C J, et al. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, 2004,22(29/30):3976-3985. DOI:10.1016/j.vaccine.2004.03.053
doi: 10.1016/j.vaccine.2004.03.053
10 ZIJDERVELD S M VAN, GERRITS W J J, APAJALAHTI J A, et al. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. Journal of Dairy Science, 2010,93(12):5856-5866. DOI:10.3168/jds.2010-3281
doi: 10.3168/jds.2010-3281
11 沈李东,胡宝兰,郑平.甲烷厌氧氧化微生物的研究进展. 土壤学报,2011,48(3):619-628. DOI:10.11766/trxb201004050120
SHEN L D, HU B L, ZHENG P. Progress in study on microorganisms responsible for anaerobic oxidation of methane. Acta Pedologica Sinica, 2011,48(3):619-628. (in Chinese with English abstract)
doi: 10.11766/trxb201004050120
12 THAUER R K. Functionalization of methane in anaerobic microorganisms. Angewandte Chemie-International Edition, 2010,49(38):6712-6713. DOI:10.1002/anie.201002967
doi: 10.1002/anie.201002967
13 LI L, XUE S, XI J R. Anaerobic oxidation of methane coupled to sulfate reduction: consortium characteristics and application in co-removal of H2S and methane. Journal of Environmental Sciences-China, 2019,76:238-248. DOI:10.1016/j.jes.2018.05.006
doi: 10.1016/j.jes.2018.05.006
14 BEAL E J, HOUSE C H, ORPHAN V J. Manganese- and iron-dependent marine methane oxidation. Science, 2009,325(5937):184-187. DOI:10.1126/science.1169984
doi: 10.1126/science.1169984
15 HU B L, SHEN L D, LIAN X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. PNAS, 2014,111(12):4495-4500. DOI:10.1073/pnas.1318393111
doi: 10.1073/pnas.1318393111
16 RAGHOEBARSING A A, POL A, DE PAS-SCHOONEN K T VAN, et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 2006,440(7086):918-921. DOI:10.1038/nature04617
doi: 10.1038/nature04617
17 NORDI K A, THAMDRUP B, SCHUBERT C J. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnology and Oceanography, 2013,58(2):546-554. DOI:10.4319/lo.2013.58.2.0546
doi: 10.4319/lo.2013.58.2.0546
18 EGGER M, RASIGRAF O, SAPART C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environmental Science and Technology, 2015,49(1):277-283. DOI:10.1021/es503663z
doi: 10.1021/es503663z
19 ORPHAN V J, HINRICHS K U, USSLER W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology, 2001,67(4):1922-1934. DOI:10.1128/aem.67.4.1922-1934.2001
doi: 10.1128/aem.67.4.1922-1934.2001
20 KNITTEL K, LOSEKANN T, BOETIUS A, et al. Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology, 2005,71(1):467-479. DOI:10.1128/AEM.71.1.467-479.2005
doi: 10.1128/AEM.71.1.467-479.2005
21 TIMMERS P H A, WELTE C U, KOEHORST J J, et al. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea, 2017(17):1-22. DOI:10.1155/2017/1654237
doi: 10.1155/2017/1654237
22 MILLS H J, HODGES C, WILSON K, et al. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiology Ecology, 2003,46(1):39-52. DOI:10.1016/S0168-6496(03)00191-0
doi: 10.1016/S0168-6496(03)00191-0
23 LLOYD K G, LAPHAM L, TESKE A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Applied and Environmental Microbiology, 2006,72(11):7218-7230. DOI:10.1128/AEM.00886-06
doi: 10.1128/AEM.00886-06
24 KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 2009,63(1):311-334. DOI:10.1146/annurev.micro.61.080706.093130
doi: 10.1146/annurev.micro.61.080706.093130
25 MICHAELIS W, SEIFERT R, NAUHAUS K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 2002,297(5583):1013-1015. DOI:10.1126/science.1073774
doi: 10.1126/science.1073774
26 LOSEKANN T, KNITTEL K, NADALIG T, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Applied and Environmental Microbiology, 2007,73(10):3348-3362. DOI:10.1128/AEM.00016-07
doi: 10.1128/AEM.00016-07
27 NIEMANN H, LOSEKANN T, DE BEER D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 2006,443(7113):854-858. DOI:10.1038/nature05227
doi: 10.1038/nature05227
28 SCHELLER S, GOENRICH M, BOECHER R, et al. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature, 2010,465(7298):606-608. DOI:10.1038/nature09015
doi: 10.1038/nature09015
29 THAUER R K. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Current Opinion in Microbiology, 2011,14(3):292-299. DOI:10.1016/j.mib.2011.03.003
doi: 10.1016/j.mib.2011.03.003
30 HAROON M F, HU S H, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 2013,500(7464):567-570. DOI:10.1038/nature12375
doi: 10.1038/nature12375
31 VALENTINE D L, REEBURGH W S, BLANTON D C. A culture apparatus for maintaining H2 at sub-nanomolar concentrations. Journal of Microbiological Methods, 2000,39(3):243-251. DOI:10.1016/S0167-7012(99)00125-6
doi: 10.1016/S0167-7012(99)00125-6
32 HINRICHS K U, HAYES J M, SYLVA S P, et al. Methane-consuming archaebacteria in marine sediments. Nature, 1999,398(6730):802-805.
33 VALENTINE D L, REEBURGH W S. New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2000,2(5):477-484. DOI:10.1046/j.1462-2920.2000.00135.x
doi: 10.1046/j.1462-2920.2000.00135.x
34 MORAN J J, BEAL E J, VRENTAS J M, et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 2008,10(1):162-173. DOI:10.1111/j.1462-2920.2007.01441.x
doi: 10.1111/j.1462-2920.2007.01441.x
35 HOEHLER T M, ALPERIN M J, ALBERT D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 1994,8(4):451-463. DOI:10.1029/94gb01800
doi: 10.1029/94gb01800
36 ETTWIG K F, SHIMA S, DE PASSCHOONEN K T VAN, et al. Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environmental Microbiology, 2008,10(11):3164-3173. DOI:10.1111/j.1462-2920.2008.01724.x
doi: 10.1111/j.1462-2920.2008.01724.x
37 SMITH R L, HOWES B L, GARABEDIAN S P. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests. Applied and Environmental Microbiology, 1991,57(7):1997-2004.
38 乔升民,乔君毅,谭支良.反刍动物瘤胃甲烷生成机制及调控措施研究进展. 中国草食动物科学,2014,34(1):44-48. DOI:10.3969/j.issn.2095-3887.2014.01.014
QIAO S M, QIAO J Y, TAN Z L. An overview on methane biochemistry mechanism and regulation in ruminants. China Herbivore Science, 2014,34(1):44-48. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-3887.2014.01.014
39 周怿,刁其玉.反刍动物瘤胃甲烷气体生成的调控. 草食家畜,2008(4):21-24.
ZHOU Y, DIAO Q Y. Manipulation for the methane production in rumen. Grass-Feeding Livestock, 2008(4):21-24. (in Chinese with English abstract)
40 ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010,464(7288):543-548. DOI:10.1038/nature08883
doi: 10.1038/nature08883
41 TORRES N T, OCH L M, HAUSER P C, et al. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Environmental Science: Processes and Impacts, 2014,16(4):879-889. DOI:10.1039/c3em00676j
doi: 10.1039/c3em00676j
42 CROWE S A, KATSEV S, LESLIE K, et al. The methane cycle in ferruginous Lake Matano. Geobiology, 2011,9(1):61-78. DOI:10.1111/j.1472-4669.2010.00257.x
doi: 10.1111/j.1472-4669.2010.00257.x
43 ETTWIG K F, ZHU B L, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. PNAS, 2016,113(45):12792-12796. DOI:10.1073/pnas.1609534113
doi: 10.1073/pnas.1609534113
44 SCHELLER S, YU H, CHADWICK G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 2016,351(6274):703-707. DOI:10.1126/science.aad7154
doi: 10.1126/science.aad7154
45 CAI C, LEU A O, XIE G J, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(Ⅲ) reduction. The ISME Journal, 2018,12(8):1929-1939. DOI:10.1038/s41396-018-0109-x
doi: 10.1038/s41396-018-0109-x
46 SOO V W C, MCANULTY M J, TRIPATHI A, et al. Reversing methanogenesis to capture methane for liquid biofuel precursors. Microbial Cell Factories, 2016,15(1):11. DOI:10.1186/s12934-015-0397-z
doi: 10.1186/s12934-015-0397-z
47 郭嫣秋,胡伟莲,刘建新.瘤胃甲烷菌及甲烷生成的调控. 微生物学报,2005,45(1):145-148.
GUO Y Q, HU W L, LIU J X. Methanogens and manipulation of methane production in the rumen. Acta Microbiologica Sinica, 2005,45(1):145-148. (in Chinese with English abstract)
48 UNGERFELD E M, KOHN R A. The role of thermodynamics in the control of ruminal fermentation//SEJRSEN K, HVELPLUND T, NIELSEN M O. Ruminant Physiology. Wageningen, the Netherlands: Wageningen Academic Publishers, 2006:55-85.
49 JONES G A. Dissimilatory metabolism of nitrate by the rumen microbiota. Canadian Journal of Microbiology, 1972,18(12):1783-1787.
50 CALDWELL S L, LAIDLER J R, BREWER E A, et al. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science and Technology, 2008,42(18):6791-6799. DOI:10.1021/es800120b/
doi: 10.1021/es800120b/
51 PATRA A K, YU Z T. Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresource Technology, 2014,155:129-135. DOI:10.1016/j.biortech.2013.12.099
doi: 10.1016/j.biortech.2013.12.099
52 ZIJDERVELD S M VAN, GERRITS W J J, DIJKSTRA J, et al. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. Journal of Dairy Science, 2011,94(8):4028-4038. DOI:10.3168/jds.2011-4236
doi: 10.3168/jds.2011-4236
53 JANSSEN P H, KIRS M. Structure of the archaeal community of the rumen. Applied and Environmental Microbiology, 2008,74(12):3619-3625. DOI:10.1128/AEM.02812-07
doi: 10.1128/AEM
54 JARVIS G N, STROMPL C, BURGESS D M, et al. Isolation and identification of ruminal methanogens from grazing cattle. Current Microbiology, 2000,40(5):327-332. DOI:10.1007/s002849910065
doi: 10.1007/s002849910065
55 郭嫣秋.瘤胃产甲烷菌定量检测与微生物菌群调控研究.杭州:浙江大学,2008:16-18.
GUO Y Q. Quantification of methanogens and manipulation of microbial community in the rumen. Hangzhou: Zhejiang University, 2008:16-18. (in Chinese with English abstract)
56 DUTHIE C A, TROY S M, HYSLOP J J, et al. The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle. Animal, 2017,12(2):280-287. DOI:10.1017/s175173111700146x
doi: 10.1017/s175173111700146x
57 OLIJHOEK D W, HELLWING A L F, BRASK M, et al. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. Journal of Dairy Science, 2016,99(8):6191-6205. DOI:10.3168/jds.2015-10691
doi: 10.3168/jds.2015-10691
58 NGUYEN S H, LI L, HEGARTY R S. Effects of rumen protozoa of Brahman heifers and nitrate on fermentation and in vitro methane production. Asian-Australasian Journal of Animal Sciences, 2016,29(6):807-813. DOI:10.5713/ajas.15.0641
doi: 10.5713/ajas.15
59 NOLAN J V, HEGARTY R S, HEGARTY J S, et al. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Animal Production Science, 2010,50(8):801-806. DOI:10.1071/AN09211
doi: 10.1071/AN09211
60 JUDY J V, BACHMAN G C, BROWN-BRANDL T M, et al. Reducing methane production with corn oil and calcium sulfate: responses on whole-animal energy and nitrogen balance in dairy cattle. Journal of Dairy Science, 2019,102(3):2054-2067. DOI:10.3168/jds.2018-14567
doi: 10.3168/jds.2018-14567
61 WU M L, ETTIWIG K F, JETTEN M S, et al. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochemical Society Transactions, 2011,39(1):243-248.
62 沈李东.亚硝酸盐型甲烷厌氧氧化微生物特性研究进展. 环境科学,2015,36(3):1133-1140. DOI:10.13227/j.hjkx.2015.03.049
SHEN L D. Research progress on microbial properties of nitrite-dependent anaerobic methane-oxidising bacteria. Environmental Science, 2015,36(3):1133-1140. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.2015.03.049
63 ZHOU Z M, MENG Q X, YU Z T. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Applied and Environmental Microbiology, 2011,77(8):2634-2639. DOI:10.1128/AEM.02779-10
doi: 10.1128/AEM.02779-10
[1] 高歌,王佳堃. 瘤胃微生物多糖利用位点研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 263-270.
[2] 焦阳, 黄文明, 郭海明, 叶均安. 含无患子皂甙的精料对后备牛生产性能和瘤胃发酵的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 358-364.
[3] 闵航  谭玉龙  吴伟祥  陈中云  陈美慈. 一个厌氧甲烷氧化菌菌株的分离、纯化和特征研究[J]. 浙江大学学报(农业与生命科学版), 2002, 28(6): 619-624.