Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2017, Vol. 18 Issue (5): 346-362    DOI: 10.1631/jzus.A1600689
Articles     
Effect of bedding direction of oval particles on the behavior of dense granular assemblies under simple shear
Dan-da Shi, Jian-feng Xue, Zhen-ying Zhao, Yan-cheng Yang
School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; School of Engineering and IT, University of New South Wales, Campbell 2612, Australia
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Initial fabric anisotropy can greatly affect the shear behavior of particulate materials during shear. The bedding plane effect induced by particle orientation is one of the main fabric anisotropic factors that may affect other factors. It is hard to experimentally examine the effect of bedding direction of particles on the shear behavior of particulate materials, such as sand. A 2D discrete element method (DEM) is employed in this paper to study the influence of different orientations of oval particles on the behavior of dense assemblies under simple shear. As well as the macroscopic shear behavior, the evolution of particle orientation, contact normal, and inter-particle contact forces within the samples with different initial bedding angles during shear have been extensively examined. It was found that the initial bedding direction of the particles has great influence on the non-coaxiality between the directions of principal stress and principal strain increment. The bedding direction also affects the strength and dilatancy responses of DEM samples subjected to simple shear, and the samples with larger bedding angles exhibit higher shear strength and larger volume dilation. A modified stress-force-fabric relationship is proposed to describe the effect of particle bedding direction on the shear strength of samples, and the new equation can better describe the stress-force-fabric relationship of assemblies with initial anisotropic fabrics compared with the existing model.

Key wordsInitial fabric anisotropy      Particle orientation      Simple shear      Non-coaxiality      Discrete element method (DEM)     
Received: 20 October 2016      Published: 03 May 2017
CLC:  TU441  
Cite this article:

Dan-da Shi, Jian-feng Xue, Zhen-ying Zhao, Yan-cheng Yang. Effect of bedding direction of oval particles on the behavior of dense granular assemblies under simple shear. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 346-362.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1600689     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2017/V18/I5/346


椭圆颗粒层理面定向对密实颗粒试样单剪力学特性的影响

目 的:利用离散元数值模拟技术,从宏细观角度探究单剪受荷模式下,颗粒定向引起的层理面效应对数值试样强度与变形特征、应力-剪胀关系以及组构各向异性演化的影响及其机理。
创新点:1. 分析了单剪受荷条件下应力主轴偏转引发的主应力与主应变增量之间的非共轴效应,针对密实颗粒试样,研究了初始层理面倾角对非共轴应力-剪胀关系的影响;2. 从细观力学角度,研究了应力主轴偏转条件下初始不同层理面试样的应力诱发组构各向异性特征,提出了一个可以考虑初始层理面效应的应力-接触力-组构经验关系式。
方 法:1. 采用离散元团聚颗粒方法构建初始不同层理面定向的数值试样;2. 采用傅里叶级数近似法对数值试样细观组构各向异性演化规律进行统计和定量数学分析;3. 通过与已有文献数值模拟和室内试验结果的对比,探讨密实颗粒数值试样的单剪特性及非共轴应力-剪胀关系。
结 论:1. 初始层理面定向显著影响数值试样的单剪强度与体变特征,且在定量上能与室内物理试验结果进行对比;2. 在单剪受荷模式下,初始层理角越大,非共轴效应越显著;3. 随着应力主轴的偏转,颗粒定向各向异性主方向逐渐趋于大主应力面作用方向,而接触法向各向异性的主方向基本垂直于颗粒定向各向异性主方向。4. 本文提出的应力-接触力-组构关系式能够较好的反映颗粒定向对试样抗剪强度的影响。

关键词: 初始组构各向异性,  颗粒定向,  非共轴,  离散单元法 
[1]   Alshibli, K.A., Sture, S., Costes, N.C., et al., 2000. Assessment of localized deformations in sand using X-ray computed tomography. Geotechnical Testing Journal, 23(3):274-299.
doi: 10.1520/GTJ11051J
[2]   Arthur, J.R.F., Menzies, B.K., 1972. Inherent anisotropy in a sand. Géotechnique, 22(1):115-128.
doi: 10.1680/geot.1972.22.1.115
[3]   Brewer, R., 1964. Fabric and Mineral Analysis of Soils. John Wiley & Sons, Ltd., USA.
doi: 10.1097/00010694-196507000-00024
[4]   Cavarretta, I., Coop, M., O’Sullivan, C., 2010. The influence of particle characteristics on the behavior of coarse grained soils. Géotechnique, 60(6):413-424.
doi: 10.1680/geot.2010.60.6.413
[5]   Chen, L.P., Zhang, D.L., Fang, Q., et al., 2014. Research on friction characteristics and failure mechanism of anisotropic sand based on micro-statistics. Chinese Journal of Rock Mechanics and Engineering, 33(S1):3291-3298 (in Chinese).
[6]   Drescher, A., de Jong, G.D.J., 1972. Photoelastic verification of a mechanical model for the flow of a granular material. Journal of the Mechanics and Physics of Solids, 20(5):337-340.
doi: 10.1016/0022-5096(72)90029-4
[7]   Guo, P.J., 2008. Modified direct shear test for anisotropic strength of sand. Journal of Geotechnical and Geoenvironmental Engineering, 134(9):1311-1318.
doi: 10.1061/(ASCE)1090-0241(2008)134:9(1311)
[8]   Hu, M.Y., O’Sullivan, C., Jardine, R.R., et al., 2010. Stress-induced anisotropy in sand under cyclic loading. Granular Matter, 12(5):469-476.
doi: 10.1007/s10035-010-0206-7
[9]   Itasca, 2008. Two Dimensional Particle Flow Code: Software Manual (Version 4.0). Itasca Consulting Group, Inc., Minneapolis, USA.
[10]   Jiang, M.J., Sun, C., Crosta, G.B., et al., 2015. A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach. Engineering Geology, 190:1-16.
doi: 10.1016/j.enggeo.2015.02.007
[11]   Konishi, J., Oda, M., Nemat-Nasser, S., 1983. Induced anisotropy in assemblies of oval cross-sectional rods in biaxial compression. In: Jenkins, J.T., Satake, M. (Eds.), Mechanics of Granular Material: New Models and Constitutive Relations. Elsevier Science Publishers, the Netherlands, p.31-39.
doi: 10.1016/B978-0-444-42192-0.50010-4
[12]   Lai, H.J., Zheng, J.J., Zhang, R.J., et al., 2016. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(10):803-817.
doi: 10.1631/jzus.A1500302
[13]   Li, X., Yu, H.S., 2013. On the stress-force-fabric relationship for granular materials. International Journal of Solids and Structures, 50(9):1285-1302.
doi: 10.1016/j.ijsolstr.2012.12.023
[14]   Mahmood, I., Iwashita, K., 2010. Influence of inherent anisotropy on mechanical behavior of granular materials based on DEM simulations. International Journal for Numerical and Analytical Methods in Geomechanics, 34(8):795-819.
doi: 10.1002/nag.830
[15]   Miura, K., Miura, S., Toki, S., 1986. Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils and Foundations, 26(1):36-52.
doi: 10.3208/sandf1972.26.36
[16]   Munjiza, A., 2004. The Combined Finite-discrete Element Methods. John Wiley & Sons, Ltd., USA.
doi: 10.1002/0470020180
[17]   Ng, T.T., Aube, D., Altobelli, S., 2002. Void distribution of sand specimens by MRI. 15th ASCE Engineering Mechanics Conference, p.1-7.
[18]   Oda, M., 1972. Initial fabrics and their relations to mechanical properties of granular material. Soils and Foundations, 12(1):17-36.
doi: 10.3208/sandf1960.12.17
[19]   Oda, M., Konishi, J., 1974. Rotation of principal stresses in granular material during simple shear. Soils and Foundations, 14(4):39-53.
doi: 10.3208/sandf1972.14.4_39
[20]   Oda, M., Nakayama, H., 1989. Yield function for soil with anisotropic fabric. Journal of Engineering Mechanics, 115(1):89-104.
doi: 10.1061/(asce)0733-9399(1989)115:1(89)
[21]   Oda, M., Konishi, J., Nemat-Nasser, S., 1982. Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mechanics of Materials, 1(4):269-283.
doi: 10.1016/0167-6636(82)90027-8
[22]   Oda, M., Nemat-Nasser, S., Konishi, J., 1985. Stress-induced anisotropy in granular masses. Soils and Foundations, 25(3):85-97.
doi: 10.3208/sandf1972.25.3_85
[23]   O’Sullivan, C., 2011. Particulate Discrete Element Modeling: a Geomechanics Perspective. Taylor and Francis, UK.
[24]   Pradhan, T.B.S., Tatsuoka, F., Horii, N., 1988. Simple shear testing on sand in a torsional shear apparatus. Soils and Foundations, 28(2):95-112.
doi: 10.3208/sandf1972.28.2_95
[25]   Procter, D.C., Barton, R.R., 1974. Measurement of the angle of interparticle friction. Géotechnique, 24(4):581-604.
doi: 10.1680/geot.1974.24.4.581
[26]   Qian, J.G., You, Z.P., Huang, M.S., 2013. Anisotropic characteristics of granular materials under simple shear. Journal of Central South University, 20(8):2275-2284.
doi: 10.1007/s11771-013-1734-1
[27]   Rothenburg, L., Bathurst, R.J., 1989. Analytical study of induced anisotropy in idealized granular materials. Géotechnique, 39(4):601-614.
doi: 10.1680/geot.1989.39.4.601
[28]   Rothenburg, L., Bathurst, R.J., 1992. Micromechanical features of granular assemblies with planar elliptical particles. Géotechnique, 42(1):79-95.
doi: 10.1680/geot.1992.42.1.79
[29]   Satake, M., 1978. Constitution of mechanics of granular materials through graph representation. Proceedings of the 26th Japan National Congress on Theoretical and Applied Mechanics, p.257-266.
[30]   Seyedi Hosseininia, E., 2013. Stress-force-fabric relationship for planar granular materials. Géotechnique, 63(10):830-841.
doi: 10.1680/geot.12.P.055
[31]   Shen, C.K., O’Sullivan, C., Jardine, R.J., 2011. A micromechanical investigation of drained simple shear tests. International Symposium on Deformation Characteristics of Geomaterials, p.314-321.
[32]   Shi, D.D., Xue, J.F., Zhao, Z.Y., et al., 2015. A DEM investigation on simple shear behavior of dense granular assemblies. Journal of Central South University, 22(12):4844-4855.
doi: 10.1007/s11771-015-3036-2
[33]   Shi, D.D., Zheng, L., Xue, J.F., et al., 2016. DEM modeling of particle breakage in silica sands under one-dimensional compression. Acta Mechanica Solida Sinica, 29(1):78-94.
doi: 10.1016/S0894-9166(16)60008-3
[34]   Shibuya, S., Mitachi, T., Tamate, S., 1997. Interpretation of direct shear box testing of sands as quasi-simple shear. Géotechnique, 47(4):769-790.
doi: 10.1680/geot.1997.47.4.769
[35]   Thay, S., Likitlersuang, S., Pipatpongsa, T., 2013. Monotonic and cyclic behavior of Chiang Mai sand under simple shear mode. Geotechnical and Geological Engineering, 31(1):67-82.
doi: 10.1007/s10706-012-9563-9
[36]   Thomas, P.A., Bray, J.D., 1999. Capturing nonspherical shape of granular media with disk clusters. Journal of Geotechnical and Geoenvironmental Engineering, 125(3):169-178.
doi: 10.1061/(asce)1090-0241(1999)125:3(169)
[37]   Thornton, C., 2000. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1):43-53.
doi: 10.1680/geot.2000.50.1.43
[38]   Thornton, C., Zhang, L., 2006. A numerical examination of shear banding and simple shear non-coaxial flow rules. Philosophical Magazine, 86(21-22):3425-3452.
doi: 10.1080/14786430500197868
[39]   Ting, J.M., Meachum, L.R., 1995. Effect of bedding plane orientation on the behavior of granular systems. Joint Applied Mechanics and Materials Summer Meeting, p.43-57.
[40]   Tong, Z.X., Fu, P.C., Zhou, S.P., et al., 2014. Experimental investigation of shear strength of sands with inherent fabric anisotropy. Acta Geotechnica, 9(2):257-275.
doi: 10.1007/s11440-014-0303-6
[41]   Wang, J., Dove, J.E., Gutierrez, M.S., 2007. Discrete-continuum analysis of shear banding in the direct shear test. Géotechnique, 57(6):513-526.
doi: 10.1680/geot.2007.57.6.513
[42]   Yan, W.M., Zhang, L., 2013. Fabric and the critical state of idealized granular assemblages subject to biaxial shear. Computers and Geotechnics, 49:43-52.
doi: 10.1016/j.compgeo.2012.10.015
[43]   Yang, Z.X., Yang, J., Wang, L.Z., 2012. On the influence of inter-particle friction and dilatancy in granular material: a numerical analysis. Granular Matter, 14(3):433-447.
doi: 10.1007/s10035-012-0348-x
[44]   Yang, Z.X., Yang, J., Wang, L.Z., 2013. Micro-scale modeling of anisotropy effects on undrained behavior of granular soils. Granular Matter, 15(5):557-572.
doi: 10.1007/s10035-013-0429-5
[1] Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.
[2] Jian Zhou, Jia-jia Yan, Zheng-yi Liu, Xiao-nan Gong. Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 241-254.
[3] Chuan He, Kun Feng, Yong Fang, Ying-chao Jiang. Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 858-869.
[4] Ressol R. Shakir, Jun-gao Zhu. An examination of the mechanical interaction of drilling slurries at the soil-concrete contact[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(4): 294-304.
[5] Zhi-yi HUANG, Zhong-xuan YANG, Zhen-yu WANG. Discrete element modeling of sand behavior in a biaxial shear test[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1176-1183.