Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2008, Vol. 9 Issue (12): 1656-1665    DOI: 10.1631/jzus.A0720113
Electrical & Electronic Engineering     
Using relief texture for interactive and tangible virtual environments
Junae KIM, Seonhyung SHIN, Gerard Jounghyun KIM
Digital Contents Division, Electronic and Telecommunications Research Institute, Daejon 305-700, Korea; Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper first introduces a way to improve interactivity with high polygon count virtual objects through the “mixed” use of image-based representation within one object. That is, both 3D polygonal and image-based representations are maintained for an object, and switched for rendering depending on the functional requirement of the object. Furthermore, in order to reduce the popping effect and provide smooth and gradual transition during the object representation switch, the object is subdivided with the subdivided parts possibly represented differently, i.e., using 3D models or images. As for the image-based representation, the relief texture (RT) method is used. In particular, through the use of the mixed representation, a new way called TangibleScreen is proposed to provide object tangibility by associating the image-based representation with a physical prop (projecting the RTs) in a selective and flexible way. Overall, the proposed method provides a way to maintain an interactive frame rate with selective perceptual details in a large-scale virtual environment, while allowing the user to interact with virtual objects in a tangible way.

Key wordsRelief texture (RT)      Image-based modeling      Tangible interaction      Virtual environment     
Received: 10 December 2007     
CLC:  TP391  
Cite this article:

Junae KIM, Seonhyung SHIN, Gerard Jounghyun KIM. Using relief texture for interactive and tangible virtual environments. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1656-1665.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0720113     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2008/V9/I12/1656

[1] Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 862-872.
[2] Jin Cheng, Gui-fang Duan, Zhen-yu Liu, Xiao-gang Li, Yi-xiong Feng, Xiao-hai Chen. Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-II[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 774-788.
[3] Wen-feng Gan, Jian-zhong Fu, Hong-yao Shen, Zhi-wei Lin. A morphing machining strategy for artificial bone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 157-171.
[4] Chang-yu Cui, Bao-shi Jiang, You-bao Wang. Node shift method for stiffness-based optimization of single-layer reticulated shells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 97-107.
[5] Hue-yee Chong, Mahidzal Dahari, Hwa-jen Yap, Ying-tai Loong. Fuzzy-based risk prioritization for a hydrogen refueling facility in Malaysia[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 565-573.
[6] David Poto?nik, Bojan Dol?ak, Miran Ulbin. GAJA: 3D CAD methodology for developing a parametric system for the automatic (re)modeling of the cutting components of compound washer dies[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(5): 327-340.
[7] Jing-hua Xu, Shu-you Zhang, Jian-rong Tan, Ri-na Sa. Collisionless tool orientation smoothing above blade stream surface using NURBS envelope*#[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(3): 187-197.
[8] Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Víctor Yepes. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 420-432.
[9] Zhen-fei Zhan, Jie Hu, Yan Fu, Ren-Jye Yang, Ying-hong Peng, Jin Qi. Multivariate error assessment of response time histories method for dynamic systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(2): 121-131.
[10] Nur Saaidah Abu Bakar, Mohd Rizal Alkahari, Hambali Boejang. Analysis on fused deposition modelling performance[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 972-977.
[11] Jeonghwa Lee, Chi-Hyuck Jun. Biclustering of ARMA time series[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 959-965.
[12] Ding-yin XIA, Fei WU, Wen-hao LIU, Han-wang ZHANG. Image interpretation: mining the visible and syntactic correlation of annotated words[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1759-1768.
[13] Kai LUO, Dong-xiao LI, Ya-mei FENG, Ming ZHANG. Depth-aided inpainting for disocclusion restoration of multi-view images using depth-image-based rendering[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1738-1749.
[14] Rong ZHU, Min YAO. Image feature optimization based on nonlinear dimensionality reduction[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1720-1737.
[15] Sheng-yang YU, Fang-lin WANG, Yun-feng XUE, Jie YANG. Bayesian moving object detection in dynamic scenes using an adaptive foreground model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1750-1758.