Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2007, Vol. 8 Issue (5): 812-817    DOI: 10.1631/jzus.2007.A0812
Mechanical Engineering and Materials Science     
Novel approach for determining the optimal axial preload of a simulating rotary table spindle system
SHAN Xiao-biao, XIE Tao, CHEN Wei-shan
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS® and a curve fitting in MATLAB®. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.

Key wordsThree-axis simulating rotary table      Axial position preload      Stiffness      Experimental modal analysis      Finite element analysis     
Received: 18 July 2006     
CLC:  TH113  
Cite this article:

SHAN Xiao-biao, XIE Tao, CHEN Wei-shan. Novel approach for determining the optimal axial preload of a simulating rotary table spindle system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(5): 812-817.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2007.A0812     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2007/V8/I5/812

[1] Yao-bin Zhuo, Xue-yan Xiang, Xiao-jun Zhou, Hao-liang Lv, Guo-yang Teng. A method for the global optimization of the tooth contact pattern and transmission error of spiral bevel and hypoid gears[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 377-392.
[2] Zhi Chao Ong, Hong Cheet Lim, Shin Yee Khoo, Zubaidah Ismail, Keen Kuan Kong, Abdul Ghaffar Abdul Rahman. Assessment of the phase synchronization effect in modal testing during operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(2): 92-105.
[3] Chih-Hung Chen, Hsuan-Teh Hu, Fu-Ming Lin, Hsin-Hsin Hsieh. Residual stress analysis and bow simulation of crystalline silicon solar cells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 49-58.
[4] Gianpaolo Perrella, Giovanni Maria Montuori, Massimiliano Fraldi, Elena Mele. Design procedure for thin three-layer plates made of a depleted material[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 427-442.
[5] Bao-tong Li, Su-na Yan, Jun Hong. A growth-based topology optimizer for stiffness design of continuum structures under harmonic force excitation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 933-946.
[6] Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu. Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 989-999.
[7] Zeng-hui Zhao, Wei-ming Wang, Xin Gao. Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 282-290.
[8] Zhi-gang Shan, Sheng-jie Di. Loading-unloading test analysis of anisotropic columnar jointed basalts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 603-614.
[9] Mehmet Baran, Merve Aktas. Occupant friendly seismic retrofit by concrete plates[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 789-804.
[10] Chun-yang Zhu, Ying-hua Zhao, Shuang Gao, Xiao-fei Li. Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(11): 778-788.
[11] Mykolas Daugevi?ius, Juozas Valivonis, Gediminas Mar?iukaitis. Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 571-583.
[12] Jin Zhang, Qing-feng Xu, Yi-xiang Xu, Bin Wang, Jing-xiang Shang. A numerical study on fire endurance of wood beams exposed to three-side fire[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 491-505.
[13] Hong-yan Wang, Xiao-biao Shan, Tao Xie. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 526-537.
[14] Hai-tao Li, Andrew John Deeks, Li-xin Liu, Dong-sheng Huang, Xiao-zu Su. Moment transfer factors for column-supported cast-in-situ hollow core slabs[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(3): 165-173.
[15] Chen-xi Xing, Hao Wang, Ai-qun Li, Ji-rong Wu. Design and experimental verification of a new multi-functional bridge seismic isolation bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(12): 904-914.