|
A lightweight authentication scheme with user untraceability
Kuo-Hui Yeh
Front. Inform. Technol. Electron. Eng., 2015, 16(4): 259-271.
https://doi.org/10.1631/FITEE.1400232
With the rapid growth of electronic commerce and associated demands on variants of Internet based applications, application systems providing network resources and business services are in high demand around the world. To guarantee robust security and computational efficiency for service retrieval, a variety of authentication schemes have been proposed. However, most of these schemes have been found to be lacking when subject to a formal security analysis. Recently, Chang et al. (2014) introduced a formally provable secure authentication protocol with the property of user-untraceability. Unfortunately, based on our analysis, the proposed scheme fails to provide the property of user-untraceability as claimed, and is insecure against user impersonation attack, server counterfeit attack, and man-in-the-middle attack. In this paper, we demonstrate the details of these malicious attacks. A security enhanced authentication scheme is proposed to eliminate all identified weaknesses.
|
|
Stability and agility: biped running over varied and unknown terrain
Yang Yi, Zhi-yun Lin
Front. Inform. Technol. Electron. Eng., 2015, 16(4): 283-292.
https://doi.org/10.1631/FITEE.1400284
We tackle the problem of a biped running over varied and unknown terrain. Running is a necessary skill for a biped moving fast, but it increases the challenge of dynamic balance, especially when a biped is running on varied terrain without terrain information (due to the difficulty and cost of obtaining the terrain information in a timely manner). To address this issue, a new dynamic indicator called the sustainable running criterion is developed. The main idea is to sustain a running motion without falling by maintaining the system states within a running-feasible set, instead of running on a periodic limit cycle gait in the traditional way. To meet the precondition of the criterion, the angular moment about the center of gravity (COG) is restrained close to zero at the end of the stance phase. Then to ensure a small state jump at touchdown on the unknown terrain, the velocity of the swing foot is restrained within a specific range at the end of the flight phase. Finally, the position and velocity of the COG are driven into the running-feasible set. A five-link biped with underactuated point foot is considered in simulations. It is able to run over upward and downward terrain with a height difference of 0.15~m, which shows the effectiveness of our control scheme.
|
|
Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules
Xiao-xia Zhang, Qiang-hua Xiao, Bin Li, Sai Hu, Hui-jun Xiong, Bi-hai Zhao
Front. Inform. Technol. Electron. Eng., 2015, 16(4): 293-300.
https://doi.org/10.1631/FITEE.1400282
Protein complexes are the basic units of macro-molecular organizations and help us to understand the cell’s mechanism. The development of the yeast two-hybrid, tandem affinity purification, and mass spectrometry high-throughput proteomic techniques supplies a large amount of protein-protein interaction data, which make it possible to predict overlapping complexes through computational methods. Research shows that overlapping complexes can contribute to identifying essential proteins, which are necessary for the organism to survive and reproduce, and for life’s activities. Scholars pay more attention to the evaluation of protein complexes. However, few of them focus on predicted overlaps. In this paper, an evaluation criterion called overlap maximum matching ratio (OMMR) is proposed to analyze the similarity between the identified overlaps and the benchmark overlap modules. Comparison of essential proteins and gene ontology (GO) analysis are also used to assess the quality of overlaps. We perform a comprehensive comparison of serveral overlapping complexes prediction approaches, using three yeast protein-protein interaction (PPI) networks. We focus on the analysis of overlaps identified by these algorithms. Experimental results indicate the important of overlaps and reveal the relationship between overlaps and identification of essential proteins.
|
|
An efficient quadrature demodulator for medical ultrasound imaging
Hao Zhou, Yin-fei Zheng
Front. Inform. Technol. Electron. Eng., 2015, 16(4): 301-310.
https://doi.org/10.1631/FITEE.1400205
Quadrature demodulation is used in medical ultrasound imaging to derive the envelope and instantaneous phase of the received radio-frequency (RF) signal. In quadrature demodulation, RF signal is multiplied with the sine and cosine wave reference signal and then low-pass filtered to produce the base-band complex signal, which has high computational complexity. In this paper, we propose an efficient quadrature demodulation method for B-mode and color flow imaging, in which the RF signal is demodulated by a pair of finite impulse response filters without mixing with the reference signal, to reduce the computational complexity. The proposed method was evaluated with simulation and in vivo experiments. From the simulation results, the proposed quadrature demodulation method produced similar normalized residual sum of squares (NRSS) and velocity profile compared with the conventional quadrature demodulation method. In the in vivo color flow imaging experiments, the time of the demodulation process was 5.66 ms and 3.36 ms, for the conventional method and the proposed method, respectively. These results indicated that the proposed method can maintain the performance of quadrature demodulation while reducing computational complexity.
|
7 articles
|