|
Design and implementation of the highly-reliable, low-cost housekeeping system in the ZDPS-1A pico-satellite
Yu Zhang, Yang-ming Zheng, Mu Yang, Hui Li, Zhong-he Jin
Front. Inform. Technol. Electron. Eng., 2012, 13(2): 83-89.
https://doi.org/10.1631/jzus.C1100079
The ZDPS-1A pico-satellite designed in Zhejiang University with a mass of 3.5 kg and a power consumption of less than 3.5 W is the smallest satellite in China up to now. The housekeeping system (HKS) is the core part of ZDPS-1A. The reliability of HKS has an important influence on the safety of the satellite. Traditional fault-tolerant methods do not apply to ZDPS-1A due to such pico-satellite characteristics as light weight, compactness in size, energy saving, and high integration. This paper deals with a highly-reliable, low-cost design for HKS using industrial devices. The reliable strategies of HKS include a dual modular redundancy scheme, CPU warm backup, a static triple modular redundancy scheme, and two-level watchdogs. Recursive experiments, special tests, and environmental tests show that this system meets the design target. This design has already been applied to ZDPS-1A, which was launched to execute in-orbit tasks on Sept. 22, 2010. To date, the satellite has been in a proper state for more than 15 months.
|
|
Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic
Chang-Il Son, Shun-ren Xia
Front. Inform. Technol. Electron. Eng., 2012, 13(2): 90-98.
https://doi.org/10.1631/jzus.C1100098
Tensor interpolation is a key step in the processing algorithms of diffusion tensor imaging (DTI), such as registration and tractography. The diffusion tensor (DT) in biological tissues is assumed to be positive definite. However, the tensor interpolations in most clinical applications have used a Euclidian scheme that does not take this assumption into account. Several Riemannian schemes were developed to overcome this limitation. Although each of the Riemannian schemes uses different metrics, they all result in a ‘fixed’ interpolation profile that cannot adapt to a variety of diffusion patterns in biological tissues. In this paper, we propose a DT interpolation scheme to control the interpolation profile, and explore its feasibility in clinical applications. The profile controllability comes from the non-uniform motion of interpolation on the Riemannian geodesic. The interpolation experiment with medical DTI data shows that the profile control improves the interpolation quality by assessing the reconstruction errors with the determinant error, Euclidean norm, and Riemannian norm.
|
|
PRISMO: predictive skyline query processing over moving objects
Nan Chen, Li-dan Shou, Gang Chen, Yun-jun Gao, Jin-xiang Dong
Front. Inform. Technol. Electron. Eng., 2012, 13(2): 99-117.
https://doi.org/10.1631/jzus.C10a0728
Skyline query is important in the circumstances that require the support of decision making. The existing work on skyline queries is based mainly on the assumption that the datasets are static. Querying skylines over moving objects, however, is also important and requires more attention. In this paper, we propose a framework, namely PRISMO, for processing predictive skyline queries over moving objects that not only contain spatio-temporal information, but also include non-spatial dimensions, such as other dynamic and static attributes. We present two schemes, RBBS (branch-and-bound skyline with rescanning and repacking) and TPBBS (time-parameterized branch-and-bound skyline), each with two alternative methods, to handle predictive skyline computation. The basic TPBBS is further extended to TPBBSE (TPBBS with expansion) to enhance the performance of memory space consumption and CPU time. Our schemes are flexible and thus can process point, range, and subspace predictive skyline queries. Extensive experiments show that our proposed schemes can handle predictive skyline queries effectively, and that TPBBS significantly outperforms RBBS.
|
|
Detection of time varying pitch in tonal languages: an approach based on ensemble empirical mode decomposition
Hong Hong, Xiao-hua Zhu, Wei-min Su, Run-tong Geng, Xin-long Wang
Front. Inform. Technol. Electron. Eng., 2012, 13(2): 139-145.
https://doi.org/10.1631/jzus.C1100092
A method based on ensemble empirical mode decomposition (EEMD) is proposed for accurately detecting the time varying pitch of speech in tonal languages. Unlike frame-, event-, or subspace-based pitch detectors, the time varying information of pitch within the short duration, which is of crucial importance in speech processing of tonal languages, can be accurately extracted. The Chinese Linguistic Data Consortium (CLDC) database for Mandarin Chinese was employed as standard speech data for the evaluation of the effectiveness of the method. It is shown that the proposed method provides more accurate and reliable results, particularly in estimating the tones of non-monotonically varying pitches like the third one in Mandarin Chinese. Also, it is shown that the new method has strong resistance to noise disturbance.
|
|
Resource allocation algorithm with limited feedback for multicast single frequency networks
Ming-wei Tang, Xiao-xiang Wang
Front. Inform. Technol. Electron. Eng., 2012, 13(2): 146-154.
https://doi.org/10.1631/jzus.C1100108
The single frequency network (SFN) can provide a multimedia broadcast multicast service over a large coverage area. However, the application of SFN is still restricted by a large amount of feedback. Therefore, we propose a multicast resource allocation scheme based on limited feedback to maximize the total rate while guaranteeing the quality of service (QoS) requirement of real-time services. In this scheme, we design a user feedback control algorithm to effectively reduce feedback load. The algorithm determines to which base stations the users should report channel state information. We then formulate a joint subcarrier and power allocation issue and find that it has high complexity. Hence, we first distribute subcarriers under the assumption of equal power and develop a proportional allocation strategy to achieve a tradeoff between fairness and QoS. Next, an iterative water-filling power allocation is proposed to fully utilize the limited power. To further decrease complexity, a power iterative scheme is introduced. Simulation results show that the proposed scheme significantly improves system performance while reducing 68% of the feedback overhead. In addition, the power iterative strategy is suitable in practice due to low complexity.
|
7 articles
|