Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (11): 984-998    DOI: 10.1631/jzus.C1300374
    
Scientific articles recommendation with topic regression and relational matrix factorization
Ming Yang, Ying-ming Li, Zhongfei (Mark) Zhang
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper we study the problem of recommending scientific articles to users in an online community with a new perspective of considering topic regression modeling and articles relational structure analysis simultaneously. First, we present a novel topic regression model, the topic regression matrix factorization (tr-MF), to solve the problem. The main idea of tr-MF lies in extending the matrix factorization with a probabilistic topic modeling. In particular, tr-MF introduces a regression model to regularize user factors through probabilistic topic modeling under the basic hypothesis that users share similar preferences if they rate similar sets of items. Consequently, tr-MF provides interpretable latent factors for users and items, and makes accurate predictions for community users. To incorporate the relational structure into the framework of tr-MF, we introduce relational matrix factorization. Through combining tr-MF with the relational matrix factorization, we propose the topic regression collective matrix factorization (tr-CMF) model. In addition, we also present the collaborative topic regression model with relational matrix factorization (CTR-RMF) model, which combines the existing collaborative topic regression (CTR) model and relational matrix factorization (RMF). From this point of view, CTR-RMF can be considered as an appropriate baseline for tr-CMF. Further, we demonstrate the efficacy of the proposed models on a large subset of the data from CiteULike, a bibliography sharing service dataset. The proposed models outperform the state-of-the-art matrix factorization models with a significant margin. Specifically, the proposed models are effective in making predictions for users with only few ratings or even no ratings, and support tasks that are specific to a certain field, neither of which has been addressed in the existing literature.

Key wordsMatrix factorization      Probabilistic topic modeling      Relational matrix factorization      Recommender system     
Received: 22 December 2013      Published: 07 November 2014
CLC:  TP391  
Cite this article:

Ming Yang, Ying-ming Li, Zhongfei (Mark) Zhang. Scientific articles recommendation with topic regression and relational matrix factorization. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 984-998.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1300374     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I11/984


基于主题回归和关联矩阵分解的科技文献推荐

研究目的:利用社交网络上科技文献的关联关系数据,进行基于矩阵分解主题模型的训练,从而更准确地推荐科技文献。
创新要点:在现有基于矩阵分解主题模型的基础上,引入科技文献数据之间的关联关系信息,从而更精确地学习数据的关联关系,提高了科技文献推荐准确率。
研究方法:着眼于主题回归模型与矩阵分解方法的结合使用,利用这两种方法在推荐系统中的应用,提出了一系列基于矩阵分解的主题模型。在CiteULike数据集上对所提出的模型进行验证。一方面,提出主题回归矩阵分解模型tr-MF(图1)。该模型对用户进行主题建模,并同时对评分利用矩阵分解构建用户与项目之间的关系。另一方面,为了有效利用科技文献之间的相关关系,提出协同主题回归相关矩阵分解模型CTR-RMF(图2)。在对文献使用主题回归和矩阵分解方法的基础上,该模型引入文献之间的关联关系进行学习。在上述两个模型基础上,提出主题回归合同矩阵分解模型tr-CMF(图3)。该模型以tr-MF为基础,进而为文献引入关联关系进行学习。最后,在CiteULike数据集上对本文提出的模型在不同特征维度(图4)、不同模型正则参数(图5,6)、不同用户活跃度(图7)等条件下同现有模型推荐准确率进行了全面比较。
重要结论:引入科技文献之间的关联关系,结合主题回归和矩阵分解方法,能够有效提升科技文献推荐准确率。

关键词: 矩阵分解,  概率主题建模,  相关矩阵分解,  推荐系统 
[1] Wei ZHANG , Jia-yu ZHUANG , Xi YONG , Jian-kou LI , Wei CHEN , Zhe-min LI. Personalized topic modeling for recommending user-generated content[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(5): 708-718.
[2] Bin Ju, Yun-tao Qian, Min-chao Ye. Preference transfer model in collaborative filtering for implicit data[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 489-500.
[3] Xiu-rui Geng, Lu-yan Ji, Kang Sun. Non-negative matrix factorization based unmixing for principal component transformed hyperspectral data[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 403-412.
[4] Zhen-ming Yuan, Chi Huang, Xiao-yan Sun, Xing-xing Li, Dong-rong Xu. A microblog recommendation algorithm based on social tagging and a temporal interest evolution model[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 532-540.
[5] Li-wei Huang, Gui-sheng Chen, Yu-chao Liu, De-yi Li. Enhancing recommender systems by incorporating social information[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(9): 711-721.
[6] Ji-ming Li, Yun-tao Qian. Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(7): 542-549.
[7] Imran Ghani, Choon Yeul Lee, Sung Hyun Juhn, Seung Ryul Jeong. Semantics-oriented approach for information interoperability and governance: towards user-centric enterprise architecture management[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 227-240.