Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (9): 776-793    DOI: 10.1631/jzus.C1400013
    
Data center network architecture in cloud computing: review, taxonomy, and open research issues
Han Qi, Muhammad Shiraz, Jie-yao Liu, Abdullah Gani, Zulkanain ABDUL Rahman, Torki A. Altameem
Mobile Cloud Computing Research Lab, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of History, Faculty of Arts and Social Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Computer Science, Riyadh Community College, King Saud University, Riyadh 11533, Saudi Arabia
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The data center network (DCN), which is an important component of data centers, consists of a large number of hosted servers and switches connected with high speed communication links. A DCN enables the deployment of resources centralization and on-demand access of the information and services of data centers to users. In recent years, the scale of the DCN has constantly increased with the widespread use of cloud-based services and the unprecedented amount of data delivery in/between data centers, whereas the traditional DCN architecture lacks aggregate bandwidth, scalability, and cost effectiveness for coping with the increasing demands of tenants in accessing the services of cloud data centers. Therefore, the design of a novel DCN architecture with the features of scalability, low cost, robustness, and energy conservation is required. This paper reviews the recent research findings and technologies of DCN architectures to identify the issues in the existing DCN architectures for cloud computing. We develop a taxonomy for the classification of the current DCN architectures, and also qualitatively analyze the traditional and contemporary DCN architectures. Moreover, the DCN architectures are compared on the basis of the significant characteristics, such as bandwidth, fault tolerance, scalability, overhead, and deployment cost. Finally, we put forward open research issues in the deployment of scalable, low-cost, robust, and energy-efficient DCN architecture, for data centers in computational clouds.

Key wordsData center network      Cloud computing      Architecture      Network topology     
Received: 09 January 2014      Published: 06 September 2014
CLC:  TP393  
Cite this article:

Han Qi, Muhammad Shiraz, Jie-yao Liu, Abdullah Gani, Zulkanain ABDUL Rahman, Torki A. Altameem. Data center network architecture in cloud computing: review, taxonomy, and open research issues. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 776-793.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400013     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I9/776


云计算数据中心网络结构:回顾、分类与研究热点展望

研究目的:数据中心网络由大量服务器主机与数据交换设备经高速网络互连,是数据中心的重要组成部分。数据中心能够通过建立集中化的数据资源向终端用户按需提供信息与服务。近年来,基于云计算的服务大量增加,由此产生的数据中心内(间)大规模数据流量,使得数据中心网络规模不断扩大,而传统的数据中心网络结构随着云服务的用户增加,在带宽汇聚、扩展性、性价比等方面的表现不尽如人意。因此,迫切需要一个具备良好可扩展性、高性价比、高稳定性以及低能耗的新型数据中心网络结构。
\n文章内容:回顾了近年来数据中心网络结构的研究发现和相关技术,指出现有云计算数据中心网络结构的特点。将现有多种数据中心网络结构按照树形(Clos/tree-based),负载均衡(valiant load balancing),递归(hierarchically recursive),光/无线(optical/wireless),以及随机连接(randomly connected)五个方面进行分类,详细介绍各个类别下的代表结构,并对这些网络结构进行横向比较,选取的指标包括带宽、容错、可扩展性、开销以及网络搭建大致费用。最后,从可扩展性、成本、稳定性、能效等方面,对未来面向云计算的数据中心网络结构的研究热点进行展望。

关键词: 数据中心网络,  云计算,  结构,  网络拓扑 
[1] Aftab Ahmed Chandio, Nikos Tziritas, Fan Zhang, Ling Yin, Cheng-Zhong Xu. Towards adaptable and tunable cloud-based map-matching strategy for GPS trajectories[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1305-1319.
[2] You-bo Liu, Jun-yong Liu, Gareth Taylor, Ting-jian Liu, Jing Gou, Xi Zhang. Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1107-1121.
[3] Hong-wu Lv, Jun-yu Lin, Hui-qiang Wang, Guang-sheng Feng, Mo Zhou. Analyzing the service availability of mobile cloud computing systems by fluid-flow approximation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 553-567.
[4] Alireza Parvizi-Mosaed, Shahrouz Moaven, Jafar Habibi, Ghazaleh Beigi, Mahdieh Naser-Shariat. Towards a self-adaptive service-oriented methodology based on extended SOMA[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 43-69.
[5] Da-yu Xu, Shan-lin Yang, Ren-ping Liu. A mixture of HMM, GA, and Elman network for load prediction in cloud-oriented data centers[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(11): 845-858.
[6] Du Wan Cheun, Hyun Jung La, Soo Dong Kim. A taxonomic framework for autonomous service management in Service-Oriented Architecture[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 339-354.
[7] Liang Wei, Dan-dan Ding, Juan Du, Bin-bin Yu, Lu Yu. An efficient hardware design for HDTV H.264/AVC encoder[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 499-506.
[8] Kui-kang Cao, Hai-bin Shen, Hua-feng Chen. A parallel and scalable digital architecture for training support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 620-628.
[9] Imran Ghani, Choon Yeul Lee, Sung Hyun Juhn, Seung Ryul Jeong. Semantics-oriented approach for information interoperability and governance: towards user-centric enterprise architecture management[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 227-240.
[10] Xiao-song ZHANG, Ting CHEN, Jiong ZHENG, Hua LI. Proactive worm propagation modeling and analysis in unstructured peer-to-peer networks[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(2): 119-129.