在线社交网络内动态群组查询
研究目的:在线社交网络的动态群组形成具有在线即时、信息突发和传播迅速等特点,在大数据环境下及时发现有用的群组内的信息,是本专业的一项富有挑战性的工作。本文引用描述用户关系的逻辑模型(Follow Model,简称“粉丝模型”),结合文章映射和化简(MapReduce)概念,探讨映射关注和化简粉丝(MapFollowee & ReduceFollower)机制在Hadoop系统联机实现的算法。
创新要点:在线社交网络的研究缺乏使用和方便的基础理论模型,粉丝模型(Follow Model)的建立,为研究动态群组查询和微博转发预测等提供有效的元模型。结合映射和化简(MapReduce)理念,本文算法为在线社交网络动态群组的查询,即大数据的动态查询,提供并行计算的实用性算法。
方法提亮:组成粉丝模型(Follow Model)的各类函数把微博用户关系简洁和准确地描述出来,同时具备以下三个特点:反对称与对称性、可扩展性和可组合性。这些特性的灵活应用,形成本文提出的两大类查询算法:反对称关系查询算法(reverse relation)和高阶关系查询算法(high-order relation)。
重要结论:本文研究在线社交网络,特别是Twitter和新浪微博平台的动态群组形成机理,提出描述用户间关系的逻辑模型,即粉丝模型。将此模型结合映射和化简理念,提出对这些动态群组信息查询的并行算法。特别是通过对Twitter平台内两个群组信息查询的实际检验,展示大数据环境下本文算法的有效性。
关键词:
粉丝模型,
Hadoop,
映射和化简,
信息查询,
Twitter微博