Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (2): 139-146    DOI: 10.1631/jzus.C1300182
    
Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization
Yong-gang Peng, Jun Wang, Wei Wei
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine, a servo motor driven constant pump hydraulic system is designed for a precision injection molding process, which uses a servo motor, a constant pump, and a pressure sensor, instead of a common motor, a constant pump, a pressure proportion valve, and a flow proportion valve. A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process. Simulation results showed that this control method has good control precision and quick response.

Key wordsModel predictive control      Recurrent neural network      Neurodynamic optimization      Injection molding machine     
Received: 09 July 2013      Published: 29 January 2014
CLC:  TP273.1  
Cite this article:

Yong-gang Peng, Jun Wang, Wei Wei. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 139-146.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1300182     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I2/139


基于神经动态优化的注塑过程伺服液压系统模型预测控制

研究目的:提出一种注塑过程伺服电机驱动定量泵液压系统,解决注塑过程的节能问题,针对注塑过程液压系统压力流量的耦合、精确控制难题,提出一种基于神经动态优化的模型预测方法,实现注塑过程液压系统的精确闭环控制。
创新方法:由于在线优化的速度和计算能力限制,目前模型预测控制主要应用于控制器性能高、反应过程较慢的大型过程控制系统。本文将基于神经动态优化的模型预测控制应用于注塑成型过程,利用神经动态优化的在线并行优化处理能力,提高了优化速度,使得模型预测控制可以应用于较快响应的动态过程控制。
研究手段:建立了注塑过程伺服驱动定量泵液压系统模型,并将其转化为非线性投影系统形式,然后采用基于神经动态优化的模型预测控制方法对其进行精确控制,解决了快速响应过程的模型预测控制快速在线优化问题,克服了注塑过程中外界的干扰,实现了精确闭环控制。
重要结论:由于神经网络并行处理和分布式计算特点,基于神经动态优化的模型预测控制使得优化速度满足注塑成型过程的精确模型预测控制。模型预测控制可以扩展到一类变化较快对象的控制。

关键词: 神经动态优化,  注塑成型,  模型预测控制,  伺服液压系统 
[1] Jiao-na Wan, Zhi-jiang Shao, Ke-xin Wang, Xue-yi Fang, Zhi-qiang Wang, Ji-xin Qian. Reduced precision solution criteria for nonlinear model predictive control with the feasibility-perturbed sequential quadratic programming algorithm[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(11): 919-931.
[2] Qing-chao Wang, Jian-zhong Zhang. Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 25-35.
[3] Jian Niu, Zu-hua Xu, Jun Zhao, Zhi-jiang Shao, Ji-xin Qian. Model predictive control with an on-line identification model of a supply chain unit[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(5): 394-400.