Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (3): 197-204    DOI: 10.1631/jzus.C1200205
    
Credit scoring by feature-weighted support vector machines
Jian Shi, Shu-you Zhang, Le-miao Qiu
The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; School of Electrical and Automatic Engineering, Changshu Institute of Technology, Changshu 215500, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Recent finance and debt crises have made credit risk management one of the most important issues in financial research. Reliable credit scoring models are crucial for financial agencies to evaluate credit applications and have been widely studied in the field of machine learning and statistics. In this paper, a novel feature-weighted support vector machine (SVM) credit scoring model is presented for credit risk assessment, in which an F-score is adopted for feature importance ranking. Considering the mutual interaction among modeling features, random forest is further introduced for relative feature importance measurement. These two feature-weighted versions of SVM are tested against the traditional SVM on two real-world datasets and the research results reveal the validity of the proposed method.

Key wordsCredit scoring model      Support vector machine (SVM)      Feature weight      Random forest     
Received: 28 June 2012      Published: 05 March 2013
CLC:  TP391.4  
Cite this article:

Jian Shi, Shu-you Zhang, Le-miao Qiu. Credit scoring by feature-weighted support vector machines. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 197-204.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1200205     OR     http://www.zjujournals.com/xueshu/fitee/Y2013/V14/I3/197


Credit scoring by feature-weighted support vector machines

Recent finance and debt crises have made credit risk management one of the most important issues in financial research. Reliable credit scoring models are crucial for financial agencies to evaluate credit applications and have been widely studied in the field of machine learning and statistics. In this paper, a novel feature-weighted support vector machine (SVM) credit scoring model is presented for credit risk assessment, in which an F-score is adopted for feature importance ranking. Considering the mutual interaction among modeling features, random forest is further introduced for relative feature importance measurement. These two feature-weighted versions of SVM are tested against the traditional SVM on two real-world datasets and the research results reveal the validity of the proposed method.

关键词: Credit scoring model,  Support vector machine (SVM),  Feature weight,  Random forest 
[1] Mohammad Mosleh, Hadi Latifpour, Mohammad Kheyrandish, Mahdi Mosleh, Najmeh Hosseinpour. A robust intelligent audio watermarking scheme using support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1320-1330.
[2] G. R. Brindha, P. Swaminathan, B. Santhi. Performance analysis of new word weighting procedures for opinion mining[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1186-1198.
[3] Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen. Using Kinect for real-time emotion recognition via facial expressions[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 272-282.
[4] Zhi-yong Yan, Cong-fu Xu, Yun-he Pan. Improving naive Bayes classifier by dividing its decision regions[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 647-657.
[5] Wen-de Dong, Yue-ting Chen, Zhi-hai Xu, Hua-jun Feng, Qi Li. Image stabilization with support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 478-485.
[6] Hong-xia Pang, Wen-de Dong, Zhi-hai Xu, Hua-jun Feng, Qi Li, Yue-ting Chen. Novel linear search for support vector machine parameter selection[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(11): 885-896.
[7] Wei-dong Chen, Jian-hui Zhang, Ji-cai Zhang, Yi Li, Yu Qi, Yu Su, Bian Wu, Shao-min Zhang, Jian-hua Dai, Xiao-xiang Zheng, Dong-rong Xu. A P300 based online brain-computer interface system for virtual hand control[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 587-597.
[8] Kui-kang Cao, Hai-bin Shen, Hua-feng Chen. A parallel and scalable digital architecture for training support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 620-628.
[9] Hyeon Chang Lee, Byung Jun Kang, Eui Chul Lee, Kang Ryoung Park. Finger vein recognition using weighted local binary pattern code based on a support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(7): 514-524.