|
|
Modified extremal optimization for the hard maximum satisfiability problem |
Guo-qiang Zeng*,1, Yong-zai Lu2, Wei-Jie Mao2 |
College of Physics & Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China, State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Based on our recent study on probability distributions for evolution in extremal optimization (EO), we propose a modified framework called EOSAT to approximate ground states of the hard maximum satisfiability (MAXSAT) problem, a generalized version of the satisfiability (SAT) problem. The basic idea behind EOSAT is to generalize the evolutionary probability distribution in the Bose-Einstein-EO (BE-EO) algorithm, competing with other popular algorithms such as simulated annealing and WALKSAT. Experimental results on the hard MAXSAT instances from SATLIB show that the modified algorithms are superior to the original BE-EO algorithm.
|
Received: 09 September 2010
Published: 04 July 2011
|
|
Modified extremal optimization for the hard maximum satisfiability problem
Based on our recent study on probability distributions for evolution in extremal optimization (EO), we propose a modified framework called EOSAT to approximate ground states of the hard maximum satisfiability (MAXSAT) problem, a generalized version of the satisfiability (SAT) problem. The basic idea behind EOSAT is to generalize the evolutionary probability distribution in the Bose-Einstein-EO (BE-EO) algorithm, competing with other popular algorithms such as simulated annealing and WALKSAT. Experimental results on the hard MAXSAT instances from SATLIB show that the modified algorithms are superior to the original BE-EO algorithm.
关键词:
Extremal optimization (EO),
Evolution,
Probability distributions,
Maximum satisfiability (MAXSAT) problem
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|