Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (4): 261-269    DOI: 10.1631/jzus.C0910037
    
Optimized simulated annealing algorithm for thinning and weighting large planar arrays
Peng Chen1, Bin-jian Shen2, Li-sheng Zhou2, Yao-wu Chen*,1
1 Institute of Advanced Digital Technologies and Instrumentation, Zhejiang University, Hangzhou 310027, China 2 Hangzhou Applied Acoustics Research Institute, Hangzhou 310012, China
Download:   PDF(439KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper proposes an optimized simulated annealing (SA) algorithm for thinning and weighting large planar arrays in 3D underwater sonar imaging systems. The optimized algorithm has been developed for use in designing a 2D planar array (a rectangular grid with a circular boundary) with a fixed side-lobe peak and a fixed current taper ratio under a narrow-band excitation. Four extensions of the SA algorithm and the procedure for the optimized SA algorithm are described. Two examples of planar arrays are used to assess the efficiency of the optimized method. The proposed method achieves a similar beam pattern performance with fewer active transducers and faster convergence ability than previous SA algorithms.

Key wordsSimulated annealing (SA)      Sparse planar arrays      3D underwater sonar imaging      Beam pattern      Optimization     
Received: 15 January 2009      Published: 22 March 2010
CLC:  TB56  
Fund:  Project (No. 2006AA09Z109) supported by the National High-Tech Research and Development Program (863) of China
Cite this article:

Peng Chen, Bin-jian Shen, Li-sheng Zhou, Yao-wu Chen. Optimized simulated annealing algorithm for thinning and weighting large planar arrays. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 261-269.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C0910037     OR     http://www.zjujournals.com/xueshu/fitee/Y2010/V11/I4/261


Optimized simulated annealing algorithm for thinning and weighting large planar arrays

This paper proposes an optimized simulated annealing (SA) algorithm for thinning and weighting large planar arrays in 3D underwater sonar imaging systems. The optimized algorithm has been developed for use in designing a 2D planar array (a rectangular grid with a circular boundary) with a fixed side-lobe peak and a fixed current taper ratio under a narrow-band excitation. Four extensions of the SA algorithm and the procedure for the optimized SA algorithm are described. Two examples of planar arrays are used to assess the efficiency of the optimized method. The proposed method achieves a similar beam pattern performance with fewer active transducers and faster convergence ability than previous SA algorithms.

关键词: Simulated annealing (SA),  Sparse planar arrays,  3D underwater sonar imaging,  Beam pattern,  Optimization 
[1] T T DHIVYAPRABHA, P SUBASHINI, M KRISHNAVENI. Synergistic fibroblast optimization: a novel nature-inspired computing algorithm #br#  [J]. Front. Inform. Technol. Electron. Eng., 2018, 19(7): 815-833.
[2] Qiang LAN, Lin-bo QIAO, Yi-jie WANG. Stochastic extra-gradient based alternating direction methods for graph-guided regularized minimization[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(6): 755-762.
[3] Lai TENG, Zhong-he JIN. A composite optimization method for separation parameters of large-eccentricity pico-satellites[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(5): 685-698.
[4] Muhammad KAMRAN , Ehsan Ullah MUNIR. On the role of optimization algorithms in ownership-preserving data mining #br#  [J]. Front. Inform. Technol. Electron. Eng., 2018, 19(2): 151-164.
[5] Li XIE, Yi-qun ZHANG, Jun-yan XU. Hohmann transfer via constrained optimization[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(11): 1444-1458.
[6] Xing-chen WU , Gui-he QIN , Ming-hui SUN , He YU , Qian-yi XU. Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(9): 1385-1395.
[7] Lin CAO , Shuo TANG , Dong ZHANG. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 882-897.
[8] Hamid Reza Boveiri. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 498-510.
[9] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[10] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[11] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[12] Zong-feng QI, Qiao-qiao LIU, Jun WANG, Jian-xun LI. Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(12): 1991-2000.
[13] Xiao-qing ZHANG , Zheng-feng MING. An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1705-1719.
[14] Meng LI , Xi LIN , Xi-qun CHEN. A surrogate-based optimization algorithm for network design problems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1693-1704.
[15] Lan HUANG, Gui-chao WANG , Tian BAI , Zhe WANG. An improved fruit fly optimization algorithm for solving traveling salesman problem[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(10): 1525-1533.