Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (11): 1186-1198    DOI: 10.1631/FITEE.1500283
    
Performance analysis of new word weighting procedures for opinion mining
G. R. Brindha, P. Swaminathan, B. Santhi
School of Computing, SASTRA University, Thanjavur 613401, India
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The proliferation of forums and blogs leads to challenges and opportunities for processing large amounts of information. The information shared on various topics often contains opinionated words which are qualitative in nature. These qualitative words need statistical computations to convert them into useful quantitative data. This data should be processed properly since it expresses opinions. Each of these opinion bearing words differs based on the significant meaning it conveys. To process the linguistic meaning of words into data and to enhance opinion mining analysis, we propose a novel weighting scheme, referred to as inferred word weighting (IWW). IWW is computed based on the significance of the word in the document (SWD) and the significance of the word in the expression (SWE) to enhance their performance. The proposed weighting methods give an analytic view and provide appropriate weights to the words compared to existing methods. In addition to the new weighting methods, another type of checking is done on the performance of text classification by including stop-words. Generally, stop-words are removed in text processing. When this new concept of including stop-words is applied to the proposed and existing weighting methods, two facts are observed: (1) Classification performance is enhanced; (2) The outcome difference between inclusion and exclusion of stop-words is smaller in the proposed methods, and larger in existing methods. The inferences provided by these observations are discussed. Experimental results of the benchmark data sets show the potential enhancement in terms of classification accuracy.

Key wordsInferred word weight      Opinion mining      Supervised classification      Support vector machine (SVM)      Machine learning     
Received: 30 August 2015      Published: 07 November 2016
CLC:  TP391  
Cite this article:

G. R. Brindha, P. Swaminathan, B. Santhi. Performance analysis of new word weighting procedures for opinion mining. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1186-1198.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500283     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I11/1186


一种观点挖掘新词语权重过程性能分析

概要:论坛和博客的普及为大量信息的处理带来了挑战和机遇。基于不同主题的信息通常包含了主观的定性词语,需要经过统计分析转换为可用的定量数据。这些数据如不恰当处理则会影响观点的正确表达。每个观点相关词的主要表义各有不同。为将词的语义转换为数据并加强对观点挖掘的分析,我们提出了一种新颖的加权方案,称为词权重推测法(inferred word weighting, IWW)。IWW通过对语境下和表义中词语重要性的计算对算法进行增强。相对已有的方法,本文提出的加权方法从分析的视角上为词语提供了合适的权重。此外,通过对包含停用词的文本分类的性能研究,提供了另一种校验方法,作为对所提出的新加权方法的补充。而通常这些停用词都会在文本处理时移除。将包含停用词这一新概念应用于本文提出的加权方法和已有加权方法,可观察到2个现象:(1)文本分类性能增强;(2)包含停用词与否,所造成的文本处理结果的差异在所提出的方法中较小,而在已有方法中较大。进而,从这2种现象得出推论。基于基准数据集的实验结果表明所提出的方法在分类精度上具有优化潜力。

关键词: 词权重推测法,  观点挖掘,  监督分类法,  支持向量机,  机器学习 
[1] Mohammad Mosleh, Hadi Latifpour, Mohammad Kheyrandish, Mahdi Mosleh, Najmeh Hosseinpour. A robust intelligent audio watermarking scheme using support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1320-1330.
[2] Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen. Using Kinect for real-time emotion recognition via facial expressions[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 272-282.
[3] Fei-wei Qin, Lu-ye Li, Shu-ming Gao, Xiao-ling Yang, Xiang Chen. A deep learning approach to the classification of 3D CAD models[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 91-106.
[4] Jian Shi, Shu-you Zhang, Le-miao Qiu. Credit scoring by feature-weighted support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 197-204.
[5] Zhang Liang, Jun Xiao, Yue-ting Zhuang. Synthesizing style-preserving cartoons via non-negative style factorization[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(3): 196-207.
[6] Zhi-yong Yan, Cong-fu Xu, Yun-he Pan. Improving naive Bayes classifier by dividing its decision regions[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 647-657.
[7] Wen-de Dong, Yue-ting Chen, Zhi-hai Xu, Hua-jun Feng, Qi Li. Image stabilization with support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 478-485.
[8] Hong-xia Pang, Wen-de Dong, Zhi-hai Xu, Hua-jun Feng, Qi Li, Yue-ting Chen. Novel linear search for support vector machine parameter selection[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(11): 885-896.
[9] Yun-hua Qu, Tian-jiong Tao, Serge Sharoff, Narisong Jin, Ruo-yuan Gao, Nan Zhang, Yu-ting Yang, Cheng-zhi Xu. Using an integrated feature set to generalize and justify the Chinese-to-English transferring rule of the ‘ZHE’ aspect[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(9): 663-676.
[10] Wei-dong Chen, Jian-hui Zhang, Ji-cai Zhang, Yi Li, Yu Qi, Yu Su, Bian Wu, Shao-min Zhang, Jian-hua Dai, Xiao-xiang Zheng, Dong-rong Xu. A P300 based online brain-computer interface system for virtual hand control[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 587-597.
[11] Kui-kang Cao, Hai-bin Shen, Hua-feng Chen. A parallel and scalable digital architecture for training support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 620-628.
[12] Hyeon Chang Lee, Byung Jun Kang, Eui Chul Lee, Kang Ryoung Park. Finger vein recognition using weighted local binary pattern code based on a support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(7): 514-524.