Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (11): 1199-1217    DOI: 10.1631/FITEE.1500165
    
Level-direction decomposition analysis with a focus on image watermarking framework
M. F. Kazemi, M. A. Pourmina, A. H. Mazinan
Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This research addresses the new level-direction decomposition in the area of image watermarking as the further development of investigations. The main process of realizing a watermarking framework is to generate a watermarked image with a focus on contourlet embedding representation. The approach performance is evaluated through several indices including the peak signal-to-noise ratio and structural similarity, whereby a set of attacks are carried out using a module of simulated attacks. The obtained information is analyzed through a set of images, using different color models, to enable the calculation of normal correlation. The module of the inverse of contourlet embedding representation is correspondingly employed to obtain the present watermarked image, as long as a number of original images are applied to a scrambling module, to represent the information in disorder. This allows us to evaluate the performance of the proposed approach by analyzing a complicated system, where a decision making system is designed to find the best level and the corresponding direction regarding contourlet embedding representation. The results are illustrated in appropriate level-direction decomposition. The key contribution lies in using a new integration of a set of subsystems, employed based upon the novel mechanism in contourlet embedding representation, in association with the decision making system. The presented approach is efficient compared with state-of-the-art approaches, under a number of serious attacks. A number of benchmarks are obtained and considered along with the proposed framework outcomes. The results support our ideas.

Key wordsLevel-direction decomposition analysis      Watermarking framework      Contourlet embedding representation      Scrambling module      Simulated attacks     
Received: 20 May 2015      Published: 07 November 2016
CLC:  TP391.41  
Cite this article:

M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. Level-direction decomposition analysis with a focus on image watermarking framework. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500165     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I11/1199


图像水印框架的层级-方向分解分析

概要:本文研究新型层级-方向分解在图像水印中的应用。实现水印框架的主要步骤是生成带有水印的图像,重点用到轮廓小波嵌入表达。通过一组模拟攻击,基于峰值信噪比(peak signal-to-noise ratio)、结构相似度(structural similarity)等指标评估其性能。利用一组图像并使用不同颜色模型分析所获信息,以判断正态相关性。相应地,每当扰码模块作用于一组原始图像,用以表示无序信息,就使用逆轮廓小波嵌入表达以获取带有水印的图像。从而,我们可以通过分析一个复杂系统--其中设计了一个决策系统,使用轮廓小波嵌入表达来发现最优层级和相应方向--评估所提方法的性能。对于所得到的结果,利用恰当的层级-方向分解阐释。本文主要贡献在于,在轮廓小波嵌入表达新机制的基础上,集成一套子系统,与决策系统相配合。与现有方法相比,本文所述方法在大量重度攻击下仍然有效。利用多个基准数据集对所提方案进行了测试,结果证实方法有效。

关键词: 层级-方向分解分析,  水印框架,  轮廓小波嵌入表达,  扰码模块,  模拟攻击 
[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[2] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. Detection of engineering vehicles in high-resolution monitoring images[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.
[3] Gui-jie Wang, Yun-long Cai, Min-jian Zhao, Jie Zhong. Joint adaptive power allocation and interference suppression algorithms based on the MSER criterion for wireless sensor networks[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 917-928.
[4] Xu-dong Jiang, Bin Sheng, Wei-yao Lin, Wei Lu, Li-zhuang Ma. Image anti-aliasing techniques for Internet visual media processing: a review[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 717-728.
[5] Zheng Liu, Wei-ming Wang, Xiu-ping Liu, Li-gang Liu. Scale-aware shape manipulation[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 764-775.
[6] Yong-zhao Zhan, Yan-ting Li, Xin-yu Wang, Yi Qian. A blind watermarking algorithm for 3D mesh models based on vertex curvature[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(5): 351-362.
[7] Jian Cao, Dian-hui Mao, Qiang Cai, Hai-sheng Li, Jun-ping Du. A review of object representation based on local features[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 495-504.
[8] Xin Hao, Ye Shen, Shun-ren Xia. Automatic mass segmentation on mammograms combining random walks and active contour[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(9): 635-648.
[9] Chang-Il Son, Shun-ren Xia. Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 90-98.
[10] Le-qing Zhu, Zhen Zhang. Insect recognition based on integrated region matching and dual tree complex wavelet transform[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 44-53.
[11] Rui Wang, Wei-feng Chen, Ming-hao Pan, Hu-jun Bao. Harmonic coordinates for real-time image cloning[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(9): 690-698.
[12] Lei Zhang, Peng Liu, Yu-ling Liu, Fei-hong Yu. High quality multi-focus polychromatic composite image fusion algorithm based on filtering in frequency domain and synthesis in space domain[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(5): 365-374.
[13] Abbas Koochari, Mohsen Soryani. Exemplar-based video inpainting with large patches[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 270-277.
[14] Hong ZHOU, Hai-er XU, Pei-qi HE, Zhi-bai SONG, Chen-ge GENG. Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(3): 199-205.
[15] Jun-jie CAO, Zhi-xun SU, Xiu-ping LIU, Hai-chuan BI. Measured boundary parameterization based on Poisson’s equation[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(3): 187-198.