一种融合贝叶斯推理与LDRSKM的多模态过程监测算法
目的:针对复杂多模态工业过程故障监测存在的问题,充分利用过程数据的局部和非局部几何信息,同时实现数据聚类和低维子空间选择,提高非线性、非高斯多模态过程监测性能。
创新点:提出融合局部鉴别正则化软k-均值与贝叶斯推理的多模态过程监测算法。该方法充分利用过程数据的局部和非局部几何信息,较好地发挥了无监督学习和有监督学习的优点,提高了模态数据的分离性和解释性,监测性能良好。
方法:该方法分为二个阶段:第一阶段,首先,考虑过程数据的局部和非局部几何信息,提出一种局部保持的正则化软k-均值聚类算法(LPRSKM)。然后,建立有监督学习与无监督学习的统一框架,提出融合LPRSKM与广义线性鉴别分析算法(GELDA)的局部鉴别正则化软k-均值算法(LDRSKM)(图1)。第二阶段,使用核支持向量数据描述(KSVDD)对各局部子空间建立监测统计量及控制限。然后,基于贝叶斯推理方法建立多模态过程全局监测统计量。最后,在TE仿真平台对所提方法进行仿真分析。
结论:针对非线性、非高斯的多模态过程监测,提出一种新的数据划分和最优低维子空间选择的迭代算法来提高不同模态数据的分离效果。在此基础上使用KSVDD和贝叶斯推理方法,较好地解决了多个非高斯和非线性的过程模态的监测准确性和可靠性问题。
关键词:
多模态过程监测,
局部鉴别正则化软k-均值,
核支持向量数据描述,
贝叶斯推理