Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (4): 272-282    DOI: 10.1631/FITEE.1400209
    
Using Kinect for real-time emotion recognition via facial expressions
Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen
Department of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their performance is usually computationally expensive. In this paper, we propose a real-time emotion recognition approach based on both 2D and 3D facial expression features captured by Kinect sensors. To capture the deformation of the 3D mesh during facial expression, we combine the features of animation units (AUs) and feature point positions (FPPs) tracked by Kinect. A fusion algorithm based on improved emotional profiles (IEPs) and maximum confidence is proposed to recognize emotions with these real-time facial expression features. Experiments on both an emotion dataset and a real-time video show the superior performance of our method.

Key wordsKinect      Emotion recognition      Facial expression      Real-time classification      Fusion algorithm      Support vector machine (SVM)     
Received: 12 June 2014      Published: 03 April 2015
CLC:  TP391.4  
Cite this article:

Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen. Using Kinect for real-time emotion recognition via facial expressions. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 272-282.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1400209     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I4/272


基于Kinect的实时面部情感识别

目的:基于Kinect提取面部表情特征,实现对视频中面部情感实时识别。
创新点:基于Kinect提出一种新颖的面部情感识别方法,充分发挥出Kinect高速易用的优势,可实时对视频序列最新连续帧中表现出的情感进行综合判定。识别方法涉及两种不同形式的表情特征,对此我们也针对性地提出基于最大置信的融合算法。
方法:首先,运用Kinect中Face Tracking SDK从实时视频数据中追踪人脸、提取面部运动单元信息和特征点坐标(图3、4)。然后,将这两类特征信息并行处理,在它们各自特征通道中,特征数据经7元1-vs-1分类器组进行预识别,将得到的预识别结果存入缓存用于情感置信统计,置信度最高的即为此通道中的情感识别结果(图2)。最后,融合这两个特征通道的结果即可得到最终情感识别结果(图1)。
结论:基于Kinect提取到的两种面部表情特征(面部运动单元信息和特征点坐标),提出一种新颖高效的面部情感识别方法,实现对视频中面部情感实时识别。

关键词: Kinect,  情感识别,  面部表情,  实时分类,  融合算法,  支持向量机 
[1] Miguel Oliver, Francisco Montero, José Pascual Molina, Pascual González, Antonio Fernández-Caballero. Multi-camera systems for rehabilitation therapies: a study of the precision of Microsoft Kinect sensors[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 348-364.
[2] Mohammad Mosleh, Hadi Latifpour, Mohammad Kheyrandish, Mahdi Mosleh, Najmeh Hosseinpour. A robust intelligent audio watermarking scheme using support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1320-1330.
[3] G. R. Brindha, P. Swaminathan, B. Santhi. Performance analysis of new word weighting procedures for opinion mining[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1186-1198.
[4] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. Speech emotion recognition with unsupervised feature learning[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[5] Qi-rong Mao, Xiao-lei Zhao, Zheng-wei Huang, Yong-zhao Zhan. Speaker-independent speech emotion recognition by fusion of functional and accompanying paralanguage features[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 573-582.
[6] Xiao-hu Ma, Yan-qi Tan, Gang-min Zheng. A fast classification scheme and its application to face recognition[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 561-572.
[7] Jian Shi, Shu-you Zhang, Le-miao Qiu. Credit scoring by feature-weighted support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 197-204.
[8] Zhi-yong Yan, Cong-fu Xu, Yun-he Pan. Improving naive Bayes classifier by dividing its decision regions[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 647-657.
[9] Wen-de Dong, Yue-ting Chen, Zhi-hai Xu, Hua-jun Feng, Qi Li. Image stabilization with support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 478-485.
[10] Hong-xia Pang, Wen-de Dong, Zhi-hai Xu, Hua-jun Feng, Qi Li, Yue-ting Chen. Novel linear search for support vector machine parameter selection[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(11): 885-896.
[11] Wei-dong Chen, Jian-hui Zhang, Ji-cai Zhang, Yi Li, Yu Qi, Yu Su, Bian Wu, Shao-min Zhang, Jian-hua Dai, Xiao-xiang Zheng, Dong-rong Xu. A P300 based online brain-computer interface system for virtual hand control[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 587-597.
[12] Kui-kang Cao, Hai-bin Shen, Hua-feng Chen. A parallel and scalable digital architecture for training support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 620-628.
[13] Hyeon Chang Lee, Byung Jun Kang, Eui Chul Lee, Kang Ryoung Park. Finger vein recognition using weighted local binary pattern code based on a support vector machine[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(7): 514-524.