Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (11): 840-849    DOI: 10.1631/jzus.C1200065
    
Void defect detection in ball grid array X-ray images using a new blob filter
Shao-hu Peng, Hyun Do Nam
Department of Electronics and Electrical Engineering, Dankook University, Yongin 448-701, Korea
Void defect detection in ball grid array X-ray images using a new blob filter
Shao-hu Peng, Hyun Do Nam
Department of Electronics and Electrical Engineering, Dankook University, Yongin 448-701, Korea
 全文: PDF 
摘要: Ball grid arrays (BGAs) have been used in the production of electronic devices/assemblies because of their advantages of small size, high I/O port density, etc. However, BGA voids can degrade the performance of the board and cause failure. In this paper, a novel blob filter is proposed to automatically detect BGA voids presented in X-ray images. The proposed blob filter uses the local image gradient magnitude and thus is not influenced by image brightness, void position, or component interference. Different sized average box filters are employed to analyze the image in multi-scale, and as a result, the proposed blob filter is robust to void size. Experimental results show that the proposed method obtains void detection accuracy of up to 93.47% while maintaining a low false ratio. It outperforms another recent algorithm based on edge detection by 40.69% with respect to the average detection accuracy, and by 16.91% with respect to the average false ratio.
关键词: Ball grid array (BGA)X-rayDefect detectionBlob detectionVoid detection    
Abstract: Ball grid arrays (BGAs) have been used in the production of electronic devices/assemblies because of their advantages of small size, high I/O port density, etc. However, BGA voids can degrade the performance of the board and cause failure. In this paper, a novel blob filter is proposed to automatically detect BGA voids presented in X-ray images. The proposed blob filter uses the local image gradient magnitude and thus is not influenced by image brightness, void position, or component interference. Different sized average box filters are employed to analyze the image in multi-scale, and as a result, the proposed blob filter is robust to void size. Experimental results show that the proposed method obtains void detection accuracy of up to 93.47% while maintaining a low false ratio. It outperforms another recent algorithm based on edge detection by 40.69% with respect to the average detection accuracy, and by 16.91% with respect to the average false ratio.
Key words: Ball grid array (BGA)    X-ray    Defect detection    Blob detection    Void detection
收稿日期: 2012-03-15 出版日期: 2012-11-02
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Shao-hu Peng
Hyun Do Nam

引用本文:

Shao-hu Peng, Hyun Do Nam. Void defect detection in ball grid array X-ray images using a new blob filter. Front. Inform. Technol. Electron. Eng., 2012, 13(11): 840-849.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1200065        http://www.zjujournals.com/xueshu/fitee/CN/Y2012/V13/I11/840

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[5] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[6] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[7] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[8] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[9] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.