Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (6): 407-417    DOI: 10.1631/jzus.C0910402
    
Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology
Gloria Bueno*,1, Oscar Déniz1, Jesús Salido1, Carmen Carrascosa2, José M. Delgado3
1 Grupo de Visión y Sistemas Inteligentes, Universidad de Castilla-La Mancha, E.T.S. Ingenieros Industriales Avda. Camilo José Cela, 3. 13071 Ciudad Real, Spain 2 Hospital General de Ciudad Real, Tomelloso s/n. 13005 Ciudad Real, Spain 3 Instituto Oncológico (Grupo IMO) Modesto Lafuente, 14, 28010 Madrid, Spain
Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology
Gloria Bueno*,1, Oscar Déniz1, Jesús Salido1, Carmen Carrascosa2, José M. Delgado3
1 Grupo de Visión y Sistemas Inteligentes, Universidad de Castilla-La Mancha, E.T.S. Ingenieros Industriales Avda. Camilo José Cela, 3. 13071 Ciudad Real, Spain 2 Hospital General de Ciudad Real, Tomelloso s/n. 13005 Ciudad Real, Spain 3 Instituto Oncológico (Grupo IMO) Modesto Lafuente, 14, 28010 Madrid, Spain
 全文: PDF(805 KB)  
摘要: This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model consists of a quadratic surface that is deformed to the exact contour of the ROI by means of the physical properties of a mass-spring system. The exact contour of each ROI is first obtained using a geodesic active contour model. The ROI is then parameterized by the vibration modes resulting from the deformation process. Once each structure has been defined, the method provides a 3D global model including the whole set of ROIs. This model allows one to describe statistically the most significant variations among its structures. Statistical ROI variations among a set of patients or through time can be analyzed. Experimental results are presented using the pelvic zone to simulate anatomical variations among structures and its application in radiotherapy treatment planning.
关键词: 3D biomechanical organ modelingEnergy minimizing deformable modelFinite element modelGeodesic active contourRadiotherapy treatment planning    
Abstract: This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model consists of a quadratic surface that is deformed to the exact contour of the ROI by means of the physical properties of a mass-spring system. The exact contour of each ROI is first obtained using a geodesic active contour model. The ROI is then parameterized by the vibration modes resulting from the deformation process. Once each structure has been defined, the method provides a 3D global model including the whole set of ROIs. This model allows one to describe statistically the most significant variations among its structures. Statistical ROI variations among a set of patients or through time can be analyzed. Experimental results are presented using the pelvic zone to simulate anatomical variations among structures and its application in radiotherapy treatment planning.
Key words: 3D biomechanical organ modeling    Energy minimizing deformable model    Finite element model    Geodesic active contour    Radiotherapy treatment planning
收稿日期: 2009-07-04 出版日期: 2010-06-02
CLC:  TP391.4  
基金资助: Project  partially  supported  by  the  VI  FP  and  VII  FP  of the European Commission through MAESTRO and ENVISION
projects  (Nos.   IP  CE503564  and  SP  CE241851)  and  Spanish Junta  de  Comunidades  de  Castilla–La  Mancha  (Nos.   PBC06-
0019 and PI-2006/01.1)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Gloria Bueno
Oscar Déniz
Jesús Salido
Carmen Carrascosa
José M. Delgado

引用本文:

Gloria Bueno, Oscar Déniz, Jesús Salido, Carmen Carrascosa, José M. Delgado. Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology. Front. Inform. Technol. Electron. Eng., 2010, 11(6): 407-417.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C0910402        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I6/407

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[3] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[4] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. 基于边界分析的森林冠层半球图像中心点定位与分割[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. 基于稠密多变量标签的“连续”头部姿态估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. 基于多维尺度拉普拉斯分析方法的全球流感疫情监测[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. 基于多尺度轮廓插值生成准密集时变点云模型序列[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. 局部不相关的局部判别嵌入人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. 超越隐主题包模型:针对场景类别识别的空间金字塔匹配[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. 带有几何形变的变形图像配准[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. 基于无监督特征学习的语音情感识别方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[15] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.