Please wait a minute...
Waste Disposal & Sustainable Energy  2020, Vol. 2 Issue (2): 127-137    DOI: 10.1007/s42768-020-00038-9
    
利用有害钛石膏制备硫铝酸盐胶凝材料:材料性能及重金属固化特性
Jingwei Li1, Wenlong Wang1, Dong Xu2, Xujiang Wang1, Yanpeng Mao1
1 Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions From Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China  2 School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
Preparation of sulfoaluminate cementitious material using harmful titanium gypsum: material properties and heavy metal immobilization characteristics
Jingwei Li1, Wenlong Wang1, Dong Xu2, Xujiang Wang1, Yanpeng Mao1
1 Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions From Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China  2 School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
 全文: PDF 
摘要: 钛白粉(一种必要的工业着色剂)的生产会伴随大量钛石膏的生成,而钛石膏是一种难处理的固体废弃物。钛石膏中含有多种金属杂质和重金属,并呈现微红色,所以很难像其他副产品石膏一样用于建筑材料中。这使得我国大部分钛石膏只能进行储存,造成了严重的环境污染。本研究首次将高杂质、高重金属含量的钛石膏与其它三种固体废弃物协同处置,来制备硫铝酸盐胶凝材料。原料中钛石膏的比重超过25%。使用XRD、XRF、ICP-OES等测试手段,研究了该硫铝酸盐胶凝材料的化学、机械和重金属浸出特性。发现钛石膏中的主要成分和金属杂质可以转化为硫铝酸盐胶凝材料的主要矿物成分叶绿石。制备的硫铝酸盐胶凝材料在水化1天、3天和28天的抗压强度分别达到38.2、59.7和95.8MPa,具有快速硬化和高强度的特点。重要的是,此硫铝酸盐胶凝材料可以有效地固化钛石膏等原料在水化过程中所含的重金属。其总铬截留率达97.5%,同时其它重金属几乎未检出。本研究为利用钛石膏生产高性能的绿色建筑材料提供了一条可行的途径,有望促进钛石膏固体废弃物的大规模利用。
关键词: 钛石膏固体废弃物硫铝酸盐胶凝材料协同利用重金属固化特性    
Abstract: The production of titanium dioxide (a necessary industrial color additive) can generate massive amount of titanium gypsum, a hard-to-treat solid waste. Diverse metallic impurities, heavy metals and reddish color in titanium gypsum make it difficult to be used in building materials like other by-product gypsums. As a result, most of titanium gypsum in China is just stored and has caused serious environmental issues. In this study, titanium gypsum, which contained high contents of impurities and heavy metals, was synergistically used with other three solid wastes to prepare sulfoaluminate cementitious material (SACM) for the first time. The mass proportion of titanium gypsum in the raw materials exceeded 25%. The chemical, mechanical and heavy metal leaching characteristics of this solid waste-based SACM were tested via XRD, XRF, ICP-OES, etc. The main components and metallic impurities of titanium gypsum could be transformed to the components of the main mineral of SACM, ye'elimite. The compressive strength of the prepared SACM reached 38.2, 59.7 and 95.8 MPa at 1-day, 3-day, and 28-day hydration, respectively, indicating the features of rapidly hardening and high strength. Importantly, the solid waste-based SACM could effectively solidify the heavy metals contained in titanium gypsum and other raw material during thje hydration process. The retention ratio of total Cr reached 97.5%, and other heavy metals were almost not detected in the leachate of SACM. This study provided a feasible approach to utilize titanium gypsum to produce high-performance, green building material, and might promote the massive utilization of this solid waste.
Key words: Titanium gypsum    Solid waste    Sulfoaluminate cementitious material    Synergistic utilization    Heavy metals    Solidification characteristics
收稿日期: 2020-02-27 出版日期: 2020-08-17
通讯作者: Jingwei Li     E-mail: ljw@sdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jingwei Li
Wenlong Wang
Dong Xu
Xujiang Wang
Yanpeng Mao

引用本文:

Jingwei Li, Wenlong Wang, Dong Xu, Xujiang Wang, Yanpeng Mao . Preparation of sulfoaluminate cementitious material using harmful titanium gypsum: material properties and heavy metal immobilization characteristics. Waste Disposal & Sustainable Energy, 2020, 2(2): 127-137.

链接本文:

http://www.zjujournals.com/wdse/CN/10.1007/s42768-020-00038-9        http://www.zjujournals.com/wdse/CN/Y2020/V2/I2/127

[1] Sunil Kumar Srivastava. 通过优化厌氧消化提高固体废物生产沼气的能力[J]. Waste Disposal & Sustainable Energy, 2020, 2(2): 85-103.
[2] Qian Chen, Guojun Lv, Xuguang Jiang, Xiaoli Zhao, Litan Kong. 熔融-水热法固化生活垃圾流化床焚烧飞灰中重金属的研究[J]. Waste Disposal & Sustainable Energy, 2019, 1(4): 251-259.
[3] To‑Hung Tsui, Jonathan W. C. Wong. 重要综述:用于城市生活垃圾可持续管理的新兴生物经济和能源化利用技术[J]. Waste Disposal & Sustainable Energy, 2019, 1(3): 151-167.