Please wait a minute...
Waste Disposal & Sustainable Energy  2020, Vol. 2 Issue (1): 27-36    DOI: 10.1007/s42768-019-00026-8
    
基于炉排和循环流化床技术的中国固体废弃物能源回收分析
A. C. Bourtsalas1, Qunxing Huang2, Hanwei Zhang3, Nickolas J. Themelis1
1 Earth Engineering Centre, Columbia University, New York, USA  2 Zhejiang University, Hangzhou, China  3 SUS Environment, Shanghai, China
Energy recovery in China from solid wastes by the moving grate and circulating fluidized bed technologies
A. C. Bourtsalas1, Qunxing Huang2, Hanwei Zhang3, Nickolas J. Themelis1
1 Earth Engineering Centre, Columbia University, New York, USA  2 Zhejiang University, Hangzhou, China  3 SUS Environment, Shanghai, China
 全文: PDF 
摘要: 近年来,中国垃圾焚烧发电行业以每年新建约30座发电厂的速度增长。与美国约11MJ/kg和欧盟8-11MJ/kg的热值相比,中国城市生活垃圾燃料的热值较低,为4-7MJ/kg。生活垃圾炉排焚烧是全球生活垃圾焚烧处置的主要技术,但低热值垃圾很难控制,因此在燃烧之前必须采取措施去除一些水分。由于这些原因,中国已经采用了一种替代技术,即循环流化床焚烧技术。本文对这两种技术进行了比较,由哥伦比亚大学和两名分别代表中国炉排和循环流化床焚烧B技术的高级工程师进行。数据来自生活垃圾焚烧发电厂实测和文献。循环流化床垃圾焚烧炉入炉物料经过预破碎,而炉排炉没有。在一年的运行周期内,炉排炉发电厂的设备利用率为90%以上,而循环流化床发电厂的设备利用率为80%以上。同样,炉排炉发电厂的厂用电量略低于循环流化床发电厂。炉排炉的紧凑性低于循环流化床炉,炉排表面的热流密度为0.5至0.6MW/m2,而循环流化床炉的炉膛横截面的热流密度约为1.7MW/m2。炉排工艺中的底灰通常是湿排的,金属回收效率较低。循环流化床工艺的一个缺点是产生的飞灰占燃烧入炉垃圾重量的5-10%,而炉排工艺仅为1-3%。
关键词: 城市生活垃圾垃圾发电循环流化床炉排热流密度电厂设备利用率    
Abstract: In recent years, the Chinese waste-to-energy (WTE) industry is growing at the rate of about thirty new plants each year. The municipal solid waste (MSW) fuel has a low heating value of 4–7 MJ/kg, in comparison to about 11 MJ/kg in U.S. and 8–11 MJ/kg in EU. Combustion of the low heating value fuel on a moving grate (MG), the dominant combustion technology worldwide, is difficult to control and measures have to be taken to remove some moisture prior to combustion. For this and other reasons, an alternative technology, the circulating fluid bed (CFB) has been implemented in China. This paper is a comparative study of the two technologies and was carried out by Columbia University and two senior engineers, representing the MG and CFB technologies of China. Data were derived from industrial operating plants and from the literature. The fuel to MG furnaces is as-received MSW, while the MSW to CFB reactors is pre-shredded using high-torque low-speed shredders. The availability of MG plants, over a 1-year period, is 90%?+?, while that of CFB facilities is 80%?+. Also, the in-plant electricity consumption of MG plants is slightly lower than the consumption of CFB plants. The MG furnace is less compact, than that of a CFB combustion chamber, with a heat flux range from 0.5 to 0.6 MW/m2 of grate surface area, while that of CFB furnace was about 1.7 MW/m2 of furnace cross-section. The bottom ash in a MG process is typically wet-discharged and the recovery of metals is less efficient. A drawback of the CFB process is that the fly ash generated is 5–10% of the weight of MSW combusted, as compared to 1–3% for moving grate plants in China.
Key words: Municipal solid waste    Waste-to-energy    WTE    Circulating fuidized bed    Moving grate    Heat fux    Plant availability
收稿日期: 2019-11-06 出版日期: 2020-04-02
通讯作者: A. C. Bourtsalas     E-mail: ab3129@columbia.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
A. C. Bourtsalas
Qunxing Huang
Hanwei Zhang
Nickolas J. Themelis

引用本文:

A. C. Bourtsalas, Qunxing Huang, Hanwei Zhang, Nickolas J. Themelis . Energy recovery in China from solid wastes by the moving grate and circulating fluidized bed technologies. Waste Disposal & Sustainable Energy, 2020, 2(1): 27-36.

链接本文:

http://www.zjujournals.com/wdse/CN/10.1007/s42768-019-00026-8        http://www.zjujournals.com/wdse/CN/Y2020/V2/I1/27

[1] Yike Zhang, Zengyi Ma, Zhuoting Fang, Yuandong Qian, Pucheng Zhong, Jianhua Yan. 城市生活垃圾焚烧飞灰无害化处置研究综述[J]. Waste Disposal & Sustainable Energy, 2020, 2(1): 1-25.
[2] Mi Yan, Sicheng Zhang, Haryo Wibowo, Nurak Grisdanurak, Yi Cai, Xuanyou Zhou, Ekkachai Kanchanatip, Antoni . 模拟生活垃圾热解制备生物炭和热解气的研究[J]. Waste Disposal & Sustainable Energy, 2020, 2(1): 37-46.
[3] Xuan Cao, Shengyong Lu, William R. Stevens, Huadong Zhong, Kaicheng Wu, Xiaodong Li, Jianhua Yan. 生活垃圾焚烧过程二噁英快速间接测量技术的研究综述[J]. Waste Disposal & Sustainable Energy, 2019, 1(1): 39-52.